Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918). This landmark paper lays out the theoretical foundations of the genetics of quantitative traits, reconciling previous observations of Mendelian segregation and continuous variation for quantitative traits.
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Longman, 1996).
Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, 1998).
Feagan, B. G. et al. Risankizumab in patients with moderate to severe Crohn’s disease: an open-label extension study. Lancet Gastroenterol. Hepatol. 3, 671–680 (2018).
Hertz, D. L. & Rae, J. Pharmacogenetics of cancer drugs. Annu. Rev. Med. 66, 65–81 (2015).
Article CAS PubMed Google Scholar
Kullo, I. J. et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022).
Article CAS PubMed PubMed Central Google Scholar
Goddard, M. E. & Hayes, B. J. Genomic selection. J. Anim. Breed. Genet. 124, 323–330 (2007).
Article CAS PubMed Google Scholar
Enbody, E. D. et al. Community-wide genome sequencing reveals 30 years of Darwin’s finch evolution. Science 381, eadf6218 (2023).
Article CAS PubMed Google Scholar
Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023). This work presents an excellent review of the lessons learned from large GWAS in humans and future directions in human quantitative genetics.
Article CAS PubMed PubMed Central Google Scholar
Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).
Article CAS PubMed PubMed Central Google Scholar
van Rheenen, W., Peyrot, W. J., Schork, A. J., Hong Lee, S. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. 20, 567–581 (2019). This work presents a review of the theory underlying genetic correlations and pleiotropy and methods for detecting pleiotropy in human populations.
Flatt, T. Life-history evolution and the genetics of fitness components in Drosophila melanogaster. Genetics 214, 3–48 (2020).
Article CAS PubMed Google Scholar
Sieberts, S. K. & Schadt, E. E. Moving toward a system genetics view of disease. Mamm. Genome 18, 389–401 (2007).
Article PubMed PubMed Central Google Scholar
Greene, C. S., Penrod, N. M., Williams, S. M. & Moore, J. H. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS ONE 4, e5639 (2009). This analysis shows that the effect of a focal locus may differ in populations with different allele frequencies if it interacts with other loci; a phenomenon that can be used to detect epistatically interacting loci in replicated association studies in populations with different allele frequencies.
Article PubMed PubMed Central Google Scholar
Gibson, G. & Dworkin, I. Uncovering cryptic genetic variation. Nat. Rev. Genet. 5, 681–690 (2004).
Article CAS PubMed Google Scholar
Ober, U. et al. Accounting for genetic architecture improves sequence based genomic prediction for a Drosophila fitness trait. PLoS ONE 10, e0126880 (2015). This study demonstrates that incorporating epistatic interactions into genomic prediction models can substantially improve predictive ability when traits exhibit epistasis.
Article PubMed PubMed Central Google Scholar
Pate, L. in Festschrift zum sechzigsten Geburtstag Richard Hertwigs [German] 536–610 (Fischer, 1910).
Stearns, F. W. One hundred years of pleiotropy: a retrospective. Genetics 186, 767–773 (2010).
Article CAS PubMed PubMed Central Google Scholar
Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14, 483–495 (2013).
Article CAS PubMed PubMed Central Google Scholar
Reissmann, M. & Ludwig, A. Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals. Semin. Cell Dev. Biol. 24, 576–586 (2013).
Article CAS PubMed Google Scholar
Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).
Article CAS PubMed PubMed Central Google Scholar
Carbone, M. A. et al. Phenotypic variation and natural selection at Catsup, a pleiotropic quantitative trait gene in Drosophila. Curr. Biol. 2, 912–919 (2006).
Falconer, D. S. The problem of environment and selection. Am. Nat. 86, 293–298 (1952).
Mackay, T. F. C. & Huang, W. Charting the genotype–phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel. Wiley Interdiscip. Rev. Dev. Biol. 7, e289 (2018).
Ho, P. W. et al. Massive QTL analysis identifies pleiotropic genetic determinants for stress resistance, aroma formation, and ethanol, glycerol and isobutanol production in Saccharomyces cerevisiae. Biotechnol. Biofuels 14, 211 (2021).
Article CAS PubMed PubMed Central Google Scholar
Flint, J. & Mackay, T. F. C. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19, 723–733 (2009).
Article CAS PubMed PubMed Central Google Scholar
Giaever, G. & Nislow, C. The yeast deletion collection: a decade of functional genomics. Genetics 197, 451–465 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kamath, R. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).
Article CAS PubMed Google Scholar
Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).
Bellen, H. J. et al. The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188, 731–743 (2011).
Article CAS PubMed PubMed Central Google Scholar
Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene activation in Drosophila. Nature 448, 151–156 (2007).
Article CAS PubMed Google Scholar
Zirin, J. et al. Large-scale transgenic Drosophila resource collections for loss- and gain-of-function studies. Genetics 214, 755–767 (2020).
Article CAS PubMed PubMed Central Google Scholar
Brown, S. D. M. Advances in mouse genetics for the study of human disease. Hum. Mol. Genet. 30, R274–R264 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ericson, E. et al. Genetic pleiotropy in Saccharomyces cerevisiae quantified by high-resolution phenotypic profiling. Mol. Genet. Genomics 275, 605–614 (2006).
Article CAS PubMed Google Scholar
Norga, K. K. et al. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development. Curr. Biol. 13, 1388–1396 (2003).
Article CAS PubMed Google Scholar
Anholt, R. R. H., Lyman, R. F. & Mackay, T. F. C. Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster. Genetics 143, 293–301 (1996).
Article CAS PubMed PubMed Central Google Scholar
Yamamoto, A. et al. Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 105, 12393–12398 (2008).
Article CAS PubMed PubMed Central Google Scholar
Harbison, S. T. & Seghal, A. Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics 178, 2341–23460 (2008).
Article CAS PubMed PubMed Central Google Scholar
Harbison, S. T. et al. Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics 166, 1807–1823 (2004).
Article CAS PubMed PubMed Central Google Scholar
Morozova, T. V., Mackay, T. F. C. & Anholt, R. R. H. Transcriptional networks for alcohol sensitivity in Drosophila melanogaster. Genetics 187, 1193–1205 (2011).
Comments (0)