Lack of Glutamate Synthase in Streptococcus zooepidemicus makes a Natural Driving Force for Increasing Hyaluronic Acid Production

Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang B, Guo X, Zang H, Liu J. Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS. Carbohyd Polym. 2015;131:233–9.

Article  CAS  Google Scholar 

Fraser J, Laurent T. Turnover and Metabolism of Hyaluronan. The Biology of Hyaluronan. Chiba Foundation Symposium Vol. 143, 41–53. Chishester. Wiley; 1989.

Brewton RG, Mayne R. Mammalian vitreous humor contains networks of hyaluronan molecules: electron microscopic analysis using the hyaluronan-binding region (G1) of aggrecan and link protein. Exp Cell Res. 1992;198(2):237–49.

Article  CAS  PubMed  Google Scholar 

Volpi N, Schiller J, Stern R, Soltes L. Role, metabolism, chemical modifications and applications of hyaluronan. Curr Med Chem. 2009;16(14):1718–45.

Article  CAS  PubMed  Google Scholar 

Jeong E, Shim WY, Kim JH. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol. 2014;185:28–36.

Article  CAS  PubMed  Google Scholar 

Yu H, Stephanopoulos G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng. 2008;10(1):24–32.

Article  CAS  PubMed  Google Scholar 

Prasad SB, Jayaraman G, Ramachandran K. Metabolic engineering of Lactococcus lactis for hyaluronic acid production: effect of co-expression of different gene-sets from has operon and culture conditions. J Biotechnol. 2010;150:79.

Article  Google Scholar 

Jia Y, Zhu J, Chen X, Tang D, Su D, Yao W, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Biores Technol. 2013;132:427–31.

Article  CAS  Google Scholar 

Ku JT, Lan EI. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2. Metab Eng. 2018;46:35–42.

Article  CAS  PubMed  Google Scholar 

Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol. 2011;77(9):2905–15.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sharma R, Munns K, Alexander T, Entz T, Mirzaagha P, Yanke LJ, et al. Diversity and distribution of commensal fecal Escherichia coli bacteria in beef cattle administered selected subtherapeutic antimicrobials in a feedlot setting. Appl Environ Microbiol. 2008;74(20):6178–86.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold spring harbor laboratory press; 1989.

Google Scholar 

Chen WY, Marcellin E, Hung J, Nielsen LK. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem. 2009;284(27):18007–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, et al. Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics. 2010;8(1):43–60.

Article  PubMed  PubMed Central  Google Scholar 

Wei Z, Fu Q, Chen Y, Cong P, Xiao S, Mo D, et al. The capsule of Streptococcus equi ssp. zooepidemicus is a target for attenuation in vaccine development. Vaccine. 2012;30(31):4670–5.

Article  CAS  PubMed  Google Scholar 

Marcellin E, Steen JA, Nielsen LK. Insight into hyaluronic acid molecular weight control. Appl Microbiol Biotechnol. 2014;98(16):6947–56.

Article  CAS  PubMed  Google Scholar 

Zhang X, Duan X-J, Tan W-S. Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. Food Chem. 2010;119(4):1643–6.

Article  CAS  Google Scholar 

Li B, Irvin S. The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR). Biochem Eng J. 2007;34(3):248–55.

Article  CAS  Google Scholar 

Jin P, Kang Z, Yuan P, Du G, Chen J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng. 2016;35:21–30.

Article  CAS  PubMed  Google Scholar 

Chong BF, Blank LM, Mclaughlin R, Nielsen LK. Microbial hyaluronic acid production. Appl Microbiol Biotechnol. 2005;66(4):341–51.

Article  CAS  PubMed  Google Scholar 

Broschat KO, Gorka C, Page JD, Martin-Berger CL, Davies MS, Huang H-C, et al. Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I: potent feedback inhibition by glucosamine 6-phosphate. J Biol Chem. 2002;277(17):14764–70.

Article  CAS  PubMed  Google Scholar 

Blank LM, Hugenholtz P, Nielsen LK. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci. J Mol Evol. 2008;67(1):13–22.

Article  ADS  CAS  PubMed  Google Scholar 

Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3Biotech. 2016;6(1):67.

Google Scholar 

留言 (0)

沒有登入
gif