miR-135b Aggravates Fusobacterium nucleatum-Induced Cisplatin Resistance in Colorectal Cancer by Targeting KLF13

Arthur, J. C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J. M., Fan, T. J., Campbell, B. J., Abujamel, T., Dogan, B., Rogers, A. B., et al. (2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science,338, 120–123.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Balacescu, O., Sur, D., Cainap, C., Visan, S., Cruceriu, D., et al. (2018). The impact of miRNA in colorectal cancer progression and its liver metastases. International Journal of Molecular Sciences,19, 3711.

Article  PubMed  PubMed Central  Google Scholar 

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians,68, 394–424.

PubMed  Google Scholar 

Chen, B., Zhang, D., Kuai, J., Cheng, M., Fang, X., & Li, G. (2017). Upregulation of miR-199a/b contributes to cisplatin resistance via Wnt/β-catenin-ABCG2 signaling pathway in ALDHA1+ Colorectal cancer stem cells. Tumour Biology,39, 101042831771515. https://doi.org/10.1177/1010428317715155

Article  CAS  Google Scholar 

Chen, S., Zhang, L., Li, M., Zhang, Y., Sun, M., et al. (2022). Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis. Nature Communications,13, 1248.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, Y., Ling, Z., & Li, L. (2020). The intestinal microbiota and colorectal cancer. Frontiers in Immunology,11, 615056.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Da, J., Wang, X., Li, L., & Xu, Y. (2021). Fusobacterium nucleatum promotes cisplatin-resistance and migration of oral squamous carcinoma cells by up-regulating Wnt5a-mediated NFATc3 expression. The Tohoku Journal of Experimental Medicine,253, 249–259.

Article  CAS  PubMed  Google Scholar 

Dai, X., Xie, Y., & Dong, M. (2022). Cancer-associated fibroblasts derived extracellular vesicles promote angiogenesis of colorectal adenocarcinoma cells through miR-135b-5p/FOXO1 axis. Cancer Biology & Therapy,23, 76–88.

Article  CAS  Google Scholar 

Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology,740, 364–378.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du, D., Su, Z., Wang, D., Liu, W., & Wei, Z. (2018). Optimal interval to surgery after neoadjuvant chemoradiotherapy in rectal cancer: a systematic review and meta-analysis. Clinical Colorectal Cancer,17, 13–24.

Article  PubMed  Google Scholar 

Franke, A. J., Parekh, H., Starr, J. S., Tan, S. A., Iqbal, A., & George, T. J., Jr. (2018). Total neoadjuvant therapy: a shifting paradigm in locally advanced rectal cancer management. Clinical Colorectal Cancer,17, 1–12.

Article  PubMed  Google Scholar 

Fuertes, M. A., Castilla, J., Alonso, C., & Pérez, J. M. (2002). Novel concepts in the development of platinum antitumor drugs. Current Medicinal Chemistry - Anti-Cancer Agents,2, 539–551.

Article  CAS  PubMed  Google Scholar 

Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science,312, 1355–1359.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gordon, M. D., & Nusse, R. (2006). Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. The Journal of Biological Chemistry,281, 22429–22433.

Article  CAS  PubMed  Google Scholar 

Guo, S., Chen, J., Chen, F., Zeng, Q., Liu, W. L., & Zhang, G. (2021). Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut,70, 1507–1519.

Article  CAS  Google Scholar 

Heard, M. E., Velarde, M. C., Giudice, L. C., Simmen, F. A., & Simmen, R. C. (2015). Krüppel-like factor 13 deficiency in uterine endometrial cells contributes to defective steroid hormone receptor signaling but not lesion establishment in a mouse model of endometriosis. Biology of Reproduction,92, 140.

Article  PubMed  PubMed Central  Google Scholar 

Hong, X. L., Yu, T. C., Huang, X. W., Wang, J. L., Sun, T. T., Yan, T. T., Zhou, C. B., Chen, H. M., Su, W. Y., Du, W., et al. (2023). Metformin abrogates Fusobacterium nucleatum-induced chemoresistance in colorectal cancer by inhibiting miR-361-5p/sonic hedgehog signaling-regulated stemness. British Journal of Cancer,128, 363–374.

Article  CAS  PubMed  Google Scholar 

Huang, X., Zhu, X., Yu, Y., Zhu, W., Jin, L., Zhang, X., Li, S., Zou, P., Xie, C., & Cui, R. (2021). Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Letters,501, 66–82.

Article  CAS  PubMed  Google Scholar 

Iida, N., Dzutsev, A., Stewart, C. A., Smith, L., Bouladoux, N., Weingarten, R. A., Molina, D. A., Salcedo, R., Back, T., Cramer, S., et al. (2013). Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science,342, 967–970.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Jia, L., Luo, S., Ren, X., Li, Y., Hu, J., Liu, B., Zhao, L., Shan, Y., & Zhou, H. (2017). miR-182 and miR-135b mediate the tumorigenesis and invasiveness of colorectal cancer cells via targeting ST6GALNAC2 and PI3K/AKT pathway. Digestive Diseases and Sciences,62, 3447–3459.

Article  CAS  PubMed  Google Scholar 

Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., Clancy, T. E., Chung, D. C., Lochhead, P., Hold, G. L., et al. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe,14, 207–215.

Article  CAS  Google Scholar 

Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., Ojesina, A. I., Jung, J., Bass, A. J., Tabernero, J., et al. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Research,22, 292–298.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, J., Liang, H., Bai, M., Ning, T., Wang, C., Fan, Q., Wang, Y., Fu, Z., Wang, N., Liu, R., et al. (2015). miR-135b promotes cancer progression by targeting transforming growth factor beta receptor II (TGFBR2) in colorectal cancer. PLoS ONE,10, e0130194.

Article  PubMed  PubMed Central  Google Scholar 

Li, S. S., Zhu, H. J., Li, J. Y., Tian, L. M., & Lv, D. M. (2020a). MiRNA-875-3p alleviates the progression of colorectal cancer via negatively regulating PLK1 level. European Review for Medical and Pharmacological Sciences,24, 1126–1133.

PubMed  Google Scholar 

Li, X., Huang, J., Yu, T., Fang, X., Lou, L., et al. (2020b). Fusobacterium nucleatum promotes the progression of colorectal cancer through Cdk5-activated Wnt/β-catenin signaling. Frontiers in Microbiology,11, 545251.

Article  PubMed  Google Scholar 

Liu, B., Liu, Y., Zhao, L., Pan, Y., Shan, Y., Li, Y., & Jia, L. (2017). Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Molecular Carcinogenesis,56, 2669–2680.

Article  CAS  PubMed  Google Scholar 

Mima, K., Nishihara, R., Qian, Z. R., Cao, Y., Sukawa, Y., Nowak, J. A., Yang, J., Dou, R., Masugi, Y., Song, M., et al. (2016). Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut,65, 1973–1980.

Article  CAS  PubMed  Google Scholar 

Qin, Y., Li, L., Wang, F., Zhou, X., Liu, Y., Yin, Y., & Qi, X. (2018). Knockdown of Mir-135b sensitizes colorectal cancer cells to oxaliplatin-induced apoptosis through increase of FOXO1. Cellular Physiology and Biochemistry,48, 1628–1637.

Article  CAS  PubMed  Google Scholar 

Rubinstein, M. R., Baik, J. E., Lagana, S. M., Han, R. P., Raab, W. J., Sahoo, D., Dalerba, P., Wang, T. C., & Han, Y. W. (2019). Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator annexin A1. EMBO Reports,20, e47638.

Article  PubMed  PubMed Central  Google Scholar 

Saliminejad, K., Khorshid, K., Fard, H. R. S., & Ghaffari, S. H. (2019). An overview of microRNAs: biology, functions, therapeutics, and analysis methods. Journal of Cellular Physiology,234, 5451–5465.

Article  CAS  PubMed  Google Scholar 

Schuijers, J., Mokry, M., Hatzis, P., Cuppen, E., & Clevers, H. (2014). Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. The EMBO Journal,33, 146–156.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent, R. L., Jr. (1998). Microbial complexes in subgingival plaque. Journal of Clinical Periodontology,25, 134–144.

Article  CAS  PubMed  Google Scholar 

Su, S. H., Wu, Y. F., Lin, Q., Wang, D. P., & Hai, J. (2019). URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion. Journal of Neuroinflammation,16, 260.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan, L., Qu, W., Wu, D., Liu, M., Ai, Q., Hu, H., Wang, Q., Chen, W., & Zhou, H. (2022). The interferon regulatory factor 6 promotes cisplatin sensitivity in colorectal cancer. Bioengineered,13, 10504–10517.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif