Ackema, K. B., Hench, J., Böckler, S., Wang, S. C., Sauder, U., Mergentaler, H., Westermann, B., Bard, F., Frank, S., & Spang, A. (2014). The small GTPase Arf1 modulates mitochondrial morphology and function. The EMBO Journal, 33, 2659–2675.
Article CAS PubMed PubMed Central Google Scholar
Alejandre-Castañeda, V., Patiño-Medina, J. A., Valle-Maldonado, M. I., Nuñez-Anita, R. E., Santoyo, G., Castro-Cerritos, K. V., Ortiz-Alvarado, R., Corrales-Escobosa, A. R., Ramírez-Díaz, M. I., Gutiérrez-Corona, J. F., et al. (2022). Secretion of the siderophore rhizoferrin is regulated by the cAMP-PKA pathway and is involved in the virulence of Mucor lusitanicus. Scientific Reports, 12, 10649.
Article PubMed PubMed Central Google Scholar
Andrianopoulos, A., & Timberlake, W. E. (1994). The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Molecular and Cellular Biology, 14, 2503–2515.
CAS PubMed PubMed Central Google Scholar
Arnaud, M. B., Cerqueira, G. C., Inglis, D. O., Skrzypek, M. S., Binkley, J., Chibucos, M. C., Crabtree, J., Howarth, C., Orvis, J., Shah, P., et al. (2012). The Aspergillus Genome Database (AspGD): Recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Research, 40, D653–D659.
Article CAS PubMed Google Scholar
Bao, M. Z., Schwartz, M. A., Cantin, G. T., Yates, J. R., 3rd., & Madhani, H. D. (2004). Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell, 119, 991–1000.
Article CAS PubMed Google Scholar
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.
Article CAS PubMed PubMed Central Google Scholar
Chou, S., Huang, L., & Liu, H. (2004). Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell, 119, 981–990.
Article CAS PubMed Google Scholar
Chou, S., Lane, S., & Liu, H. (2006). Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Molecular and Cellular Biology, 26, 4794–4805.
Article CAS PubMed PubMed Central Google Scholar
Corrochano, L. M., Kuo, A., Marcet-Houben, M., Polaino, S., Salamov, A., Villalobos-Escobedo, J. M., Grimwood, J., Álvarez, M. I., Avalos, J., Bauer, D., Benito, et al. (2016). Expansion of signal transduction pathways in fungi by extensive genome duplication. Current Biology, 26, 1577–1584.
Article CAS PubMed Google Scholar
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, W465–W469.
Article CAS PubMed PubMed Central Google Scholar
Díaz-Pérez, S. P., Patiño-Medina, J. A., Valle-Maldonado, M. I., López-Torres, A., Jácome-Galarza, I. E., Anaya-Martínez, V., Gómez-Ruiz, V., Campos-García, J., Nuñez-Anita, R. E., Ortiz-Alvarado, R., et al. (2020). Alteration of fermentative metabolism enhances Mucor circinelloides virulence. Infection and Immunity, 88, e00434-e519.
Article PubMed PubMed Central Google Scholar
Fallon, J., Kelly, J., & Kavanagh, K. (2012). Galleria mellonella as a model for fungal pathogenicity testing. In A. Brand & D. MacCallum (Eds.), Host–fungus interactions methods in molecular biology. (Vol. 845). Humana.
Fernández Núñez, L., Ocampo, J., Gottlieb, A. M., Rossi, S., & Moreno, S. (2016). Multiple isoforms for the catalytic subunit of PKA in the basal fungal lineage Mucor circinelloides. Fungal Biology, 120, 1493–1508.
Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., Lee, S. I., Baştürkmen, M., Spevak, C. C., Clutterbuck, J., et al. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 438, 1105–1115.
Article CAS PubMed Google Scholar
Gavrias, V., Andrianopoulos, A., Gimeno, C. J., & Timberlake, W. E. (1996). Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Molecular Microbiology, 19, 1255–1263.
Article CAS PubMed Google Scholar
Ghosh, A., Sarkar, A., Paul, P., & Patel, P. (2021). The rise in cases of mucormycosis, candidiasis and aspergillosis amidst COVID19. Fungal Biology Reviews, 38, 67–91.
Article CAS PubMed PubMed Central Google Scholar
Grahl, N., Shepardson, K. M., Chung, D., & Cramer, R. A. (2012). Hypoxia and fungal pathogenesis: To air or not to air? Eukaryotic Cell, 11, 560–570.
Article CAS PubMed PubMed Central Google Scholar
Hoenigl, M., Seidel, D., Carvalho, A., Rudramurthy, S. M., Arastehfar, A., Gangneux, J. P., Nasir, N., Bonifaz, A., Araiza, J., Klimko, N., et al. (2022a). The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe, 3, e543–e552.
Article CAS PubMed PubMed Central Google Scholar
Hoenigl, M., Seidel, D., Sprute, R., Cunha, C., Oliverio, M., Goldman, G. H., Ibrahim, A. S., & Carvalho, A. (2022b). COVID-19-associated fungal infections. Nature Microbiology, 7, 1127–1140.
Article CAS PubMed PubMed Central Google Scholar
Hussain, M. K., Ahmed, S., Khan, A., Siddiqui, A. J., Khatoon, S., & Jahan, S. (2023). Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents. European Journal of Medicinal Chemistry, 246, 115010.
Article CAS PubMed Google Scholar
Hwang, J. J., Chambon, P., & Davidson, I. (1993). Characterization of the transcription activation function and the DNA binding domain of transcriptional enhancer factor-1. The EMBO Journal, 12, 2337–2348.
Article CAS PubMed PubMed Central Google Scholar
Lax, C., Cánovas-Márquez, J. T., Tahiri, G., Navarro, E., Garre, V., & Nicolás, F. E. (2022). Genetic manipulation in Mucorales and new developments to study mucormycosis. International Journal of Molecular Sciences, 23, 3454.
Article CAS PubMed PubMed Central Google Scholar
Lax, C., Pérez-Arques, C., Navarro-Mendoza, M. I., Cánovas-Márquez, J. T., Tahiri, G., Pérez-Ruiz, J. A., Osorio-Concepción, M., Murcia-Flores, L., Navarro, E., Garre, V., et al. (2020). Genes, pathways, and mechanisms involved in the virulence of Mucorales. Genes, 11, 317.
Article CAS PubMed PubMed Central Google Scholar
Lee, S. C., Billmyre, R. B., Li, A., Carson, S., Sykes, S. M., Huh, E. Y., Mieczkowski, P., Ko, D. C., Cuomo, C. A., & Heitman, J. (2014). Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. Mbio, 5, e01390-e1414.
Article CAS PubMed PubMed Central Google Scholar
Lee, S. C., Li, A., Calo, S., & Heitman, J. (2013). Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathogens, 9, e1003625.
Article CAS PubMed PubMed Central Google Scholar
León-Ramírez, C. G., Sánchez-Arreguin, J. A., Cabrera-Ponce, J. L., Martínez-Soto, D., Ortiz-Castellanos, M. L., Aréchiga-Carvajal, E. T., Salazar-Chávez, M. F., Sánchez-Segura, L., & Ruiz-Herrera, J. (2022). Tec1, a member of the TEA transcription factors family, is involved in virulence and basidiocarp development in Ustilago maydis. International Microbiology, 25, 17–26.
Ma, L. J., Ibrahim, A. S., Skory, C., Grabherr, M. G., Burger, G., Butler, M., Elias, M., Idnurm, A., Lang, B. F., Sone, T., et al. (2009). Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genetics, 5, e1000549.
Article PubMed PubMed Central Google Scholar
Maurer, E., Hörtnagl, C., Lackner, M., Grässle, D., Naschberger, V., Moser, P., Segal, E., Semis, M., Lass-Flörl, C., & Binder, U. (2019). Galleria mellonella as a model system to study virulence potential of mucormycetes and evaluation of antifungal treatment. Medical Mycology, 57, 351–362.
Article CAS PubMed Google Scholar
McIntyre, M., Breum, J., Arnau, J., & Nielsen, J. (2002). Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Applied Microbiology and Biotechnology, 58, 495–502.
Article CAS PubMed Google Scholar
Morin-Sardin, S., Nodet, P., Coton, E., & Jany, J. L. (2017). Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biology Reviews, 31, 12–32.
Muthu, V., Agarwal, R., Rudramurthy, S. M., Thangaraju, D., Shevkani, M. R., Patel, A. K., Shastri, P. S., Tayade, A., Bhandari, S., Gella, V., et al. (2023). Multicenter case-control study of COVID-19-associated Mucormycosis outbreak, India. Emerging Infectious Diseases, 29, 8–19.
Article PubMed PubMed Central Google Scholar
Navarro-Mendoza, M. I., Pérez-Arques, C., Murcia, L., Martínez-García, P., Lax, C., Sanchis, M., Capilla, J., Nicolás, F. E., & Garre, V. (2018). Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Scientific Reports, 8, 7660.
Article PubMed PubMed Central Google Scholar
Navarro-Mendoza, M. I., Pérez-Arques, C., Panchal, S., Nicolás, F. E., Mondo, S. J., Ganguly, P., Pangilinan, J., Grigoriev, I. V., Heitman, J., Sanyal, K., Garre., et al. (2019). Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Current Biology, 29, 3791–3802.
Comments (0)