Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism

Ackema, K. B., Hench, J., Böckler, S., Wang, S. C., Sauder, U., Mergentaler, H., Westermann, B., Bard, F., Frank, S., & Spang, A. (2014). The small GTPase Arf1 modulates mitochondrial morphology and function. The EMBO Journal, 33, 2659–2675.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alejandre-Castañeda, V., Patiño-Medina, J. A., Valle-Maldonado, M. I., Nuñez-Anita, R. E., Santoyo, G., Castro-Cerritos, K. V., Ortiz-Alvarado, R., Corrales-Escobosa, A. R., Ramírez-Díaz, M. I., Gutiérrez-Corona, J. F., et al. (2022). Secretion of the siderophore rhizoferrin is regulated by the cAMP-PKA pathway and is involved in the virulence of Mucor lusitanicus. Scientific Reports, 12, 10649.

Article  PubMed  PubMed Central  Google Scholar 

Andrianopoulos, A., & Timberlake, W. E. (1994). The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Molecular and Cellular Biology, 14, 2503–2515.

CAS  PubMed  PubMed Central  Google Scholar 

Arnaud, M. B., Cerqueira, G. C., Inglis, D. O., Skrzypek, M. S., Binkley, J., Chibucos, M. C., Crabtree, J., Howarth, C., Orvis, J., Shah, P., et al. (2012). The Aspergillus Genome Database (AspGD): Recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Research, 40, D653–D659.

Article  CAS  PubMed  Google Scholar 

Bao, M. Z., Schwartz, M. A., Cantin, G. T., Yates, J. R., 3rd., & Madhani, H. D. (2004). Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell, 119, 991–1000.

Article  CAS  PubMed  Google Scholar 

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chou, S., Huang, L., & Liu, H. (2004). Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell, 119, 981–990.

Article  CAS  PubMed  Google Scholar 

Chou, S., Lane, S., & Liu, H. (2006). Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Molecular and Cellular Biology, 26, 4794–4805.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corrochano, L. M., Kuo, A., Marcet-Houben, M., Polaino, S., Salamov, A., Villalobos-Escobedo, J. M., Grimwood, J., Álvarez, M. I., Avalos, J., Bauer, D., Benito, et al. (2016). Expansion of signal transduction pathways in fungi by extensive genome duplication. Current Biology, 26, 1577–1584.

Article  CAS  PubMed  Google Scholar 

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, W465–W469.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Díaz-Pérez, S. P., Patiño-Medina, J. A., Valle-Maldonado, M. I., López-Torres, A., Jácome-Galarza, I. E., Anaya-Martínez, V., Gómez-Ruiz, V., Campos-García, J., Nuñez-Anita, R. E., Ortiz-Alvarado, R., et al. (2020). Alteration of fermentative metabolism enhances Mucor circinelloides virulence. Infection and Immunity, 88, e00434-e519.

Article  PubMed  PubMed Central  Google Scholar 

Fallon, J., Kelly, J., & Kavanagh, K. (2012). Galleria mellonella as a model for fungal pathogenicity testing. In A. Brand & D. MacCallum (Eds.), Host–fungus interactions methods in molecular biology. (Vol. 845). Humana.

Google Scholar 

Fernández Núñez, L., Ocampo, J., Gottlieb, A. M., Rossi, S., & Moreno, S. (2016). Multiple isoforms for the catalytic subunit of PKA in the basal fungal lineage Mucor circinelloides. Fungal Biology, 120, 1493–1508.

Article  PubMed  Google Scholar 

Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., Lee, S. I., Baştürkmen, M., Spevak, C. C., Clutterbuck, J., et al. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 438, 1105–1115.

Article  CAS  PubMed  Google Scholar 

Gavrias, V., Andrianopoulos, A., Gimeno, C. J., & Timberlake, W. E. (1996). Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Molecular Microbiology, 19, 1255–1263.

Article  CAS  PubMed  Google Scholar 

Ghosh, A., Sarkar, A., Paul, P., & Patel, P. (2021). The rise in cases of mucormycosis, candidiasis and aspergillosis amidst COVID19. Fungal Biology Reviews, 38, 67–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grahl, N., Shepardson, K. M., Chung, D., & Cramer, R. A. (2012). Hypoxia and fungal pathogenesis: To air or not to air? Eukaryotic Cell, 11, 560–570.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoenigl, M., Seidel, D., Carvalho, A., Rudramurthy, S. M., Arastehfar, A., Gangneux, J. P., Nasir, N., Bonifaz, A., Araiza, J., Klimko, N., et al. (2022a). The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe, 3, e543–e552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoenigl, M., Seidel, D., Sprute, R., Cunha, C., Oliverio, M., Goldman, G. H., Ibrahim, A. S., & Carvalho, A. (2022b). COVID-19-associated fungal infections. Nature Microbiology, 7, 1127–1140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussain, M. K., Ahmed, S., Khan, A., Siddiqui, A. J., Khatoon, S., & Jahan, S. (2023). Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents. European Journal of Medicinal Chemistry, 246, 115010.

Article  CAS  PubMed  Google Scholar 

Hwang, J. J., Chambon, P., & Davidson, I. (1993). Characterization of the transcription activation function and the DNA binding domain of transcriptional enhancer factor-1. The EMBO Journal, 12, 2337–2348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lax, C., Cánovas-Márquez, J. T., Tahiri, G., Navarro, E., Garre, V., & Nicolás, F. E. (2022). Genetic manipulation in Mucorales and new developments to study mucormycosis. International Journal of Molecular Sciences, 23, 3454.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lax, C., Pérez-Arques, C., Navarro-Mendoza, M. I., Cánovas-Márquez, J. T., Tahiri, G., Pérez-Ruiz, J. A., Osorio-Concepción, M., Murcia-Flores, L., Navarro, E., Garre, V., et al. (2020). Genes, pathways, and mechanisms involved in the virulence of Mucorales. Genes, 11, 317.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, S. C., Billmyre, R. B., Li, A., Carson, S., Sykes, S. M., Huh, E. Y., Mieczkowski, P., Ko, D. C., Cuomo, C. A., & Heitman, J. (2014). Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. Mbio, 5, e01390-e1414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, S. C., Li, A., Calo, S., & Heitman, J. (2013). Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathogens, 9, e1003625.

Article  CAS  PubMed  PubMed Central  Google Scholar 

León-Ramírez, C. G., Sánchez-Arreguin, J. A., Cabrera-Ponce, J. L., Martínez-Soto, D., Ortiz-Castellanos, M. L., Aréchiga-Carvajal, E. T., Salazar-Chávez, M. F., Sánchez-Segura, L., & Ruiz-Herrera, J. (2022). Tec1, a member of the TEA transcription factors family, is involved in virulence and basidiocarp development in Ustilago maydis. International Microbiology, 25, 17–26.

Article  PubMed  Google Scholar 

Ma, L. J., Ibrahim, A. S., Skory, C., Grabherr, M. G., Burger, G., Butler, M., Elias, M., Idnurm, A., Lang, B. F., Sone, T., et al. (2009). Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genetics, 5, e1000549.

Article  PubMed  PubMed Central  Google Scholar 

Maurer, E., Hörtnagl, C., Lackner, M., Grässle, D., Naschberger, V., Moser, P., Segal, E., Semis, M., Lass-Flörl, C., & Binder, U. (2019). Galleria mellonella as a model system to study virulence potential of mucormycetes and evaluation of antifungal treatment. Medical Mycology, 57, 351–362.

Article  CAS  PubMed  Google Scholar 

McIntyre, M., Breum, J., Arnau, J., & Nielsen, J. (2002). Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Applied Microbiology and Biotechnology, 58, 495–502.

Article  CAS  PubMed  Google Scholar 

Morin-Sardin, S., Nodet, P., Coton, E., & Jany, J. L. (2017). Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biology Reviews, 31, 12–32.

Article  Google Scholar 

Muthu, V., Agarwal, R., Rudramurthy, S. M., Thangaraju, D., Shevkani, M. R., Patel, A. K., Shastri, P. S., Tayade, A., Bhandari, S., Gella, V., et al. (2023). Multicenter case-control study of COVID-19-associated Mucormycosis outbreak, India. Emerging Infectious Diseases, 29, 8–19.

Article  PubMed  PubMed Central  Google Scholar 

Navarro-Mendoza, M. I., Pérez-Arques, C., Murcia, L., Martínez-García, P., Lax, C., Sanchis, M., Capilla, J., Nicolás, F. E., & Garre, V. (2018). Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Scientific Reports, 8, 7660.

Article  PubMed  PubMed Central  Google Scholar 

Navarro-Mendoza, M. I., Pérez-Arques, C., Panchal, S., Nicolás, F. E., Mondo, S. J., Ganguly, P., Pangilinan, J., Grigoriev, I. V., Heitman, J., Sanyal, K., Garre., et al. (2019). Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Current Biology, 29, 3791–3802.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif