Bak, S. T., Sakellariou, D., & Pena-Diaz, J. (2014). The dual nature of mismatch repair as antimutator and mutator: For better or for worse. Frontiers in Genetics, 5, 287.
Article PubMed PubMed Central Google Scholar
Banerjee, S., & Myung, K. (2004). Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints. Eukaryotic Cell, 3, 1557–1566.
Article CAS PubMed PubMed Central Google Scholar
Barberis, A., Gunde, T., Berset, C., Audetat, S., & Lüthi, U. (2005). Yeast as a screening tool. Drug Discovery Today: Technologies, 2, 187–192.
Article CAS PubMed Google Scholar
Barrick, J. E., & Lenski, R. E. (2013). Genome dynamics during experimental evolution. Nature Reviews Genetics, 14, 827–839.
Article CAS PubMed PubMed Central Google Scholar
Bielas, J. H., Loeb, K. R., Rubin, B. P., True, L. D., & Loeb, L. A. (2006). Human cancers express a mutator phenotype. Proceedings of the National Academy of Sciences of the USA, 103, 18238–18242.
Article CAS PubMed PubMed Central Google Scholar
Bradford, P. T., Goldstein, A. M., Tamura, D., Khan, S. G., Ueda, T., Boyle, J., Oh, K. S., Imoto, K., Inui, H., Moriwaki, S. I., Emmert, S., Pike, K. M., Raziuddin, A., Plona, T. M., DiGiovanna, J. J., Tucker, M. A., & Kraemer, K. H. (2011). Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. Journal of Medical Genetics, 48, 168–176.
Chahwan, R., Edelmann, W., Scharff, M. D., & Roa, S. (2011). Mismatch-mediated error prone repair at the immunoglobulin genes. Biomedicine and Pharmacotherapy, 65, 529–536.
Article CAS PubMed Google Scholar
Chen, C., & Kolodner, R. D. (1999). Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genetics, 23, 81–85.
Article CAS PubMed Google Scholar
Choi, J. E., & Chung, W. H. (2020). Functional interplay between the oxidative stress response and DNA damage checkpoint signaling for genome maintenance in aerobic organisms. Journal of Microbiology, 58, 81–91.
Article CAS PubMed Google Scholar
Chung, W. H. (2014). To peep into Pif1 helicase: Multifaceted all the way from genome stability to repair-associated DNA synthesis. Journal of Microbiology, 52, 89–98.
Article CAS PubMed Google Scholar
Clyne, M., Offman, J., Shanley, S., Virgo, J. D., Radulovic, M., Wang, Y., Ardern-Jones, A., Eeles, R., Hoffmann, E., & Yu, V. P. C. C. (2009). The G67E mutation in hMLH1 is associated with an unusual presentation of Lynch syndrome. British Journal of Cancer, 100, 376–380.
Article CAS PubMed PubMed Central Google Scholar
Coelho, M. C., Pinto, R. M., & Murray, A. W. (2019). Heterozygous mutations cause genetic instability in a yeast model of cancer evolution. Nature, 566, 275–278.
Article CAS PubMed PubMed Central Google Scholar
Craven, R. J., Greenwell, P. W., Dominska, M., & Petes, T. D. (2002) Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes. Genetics, 161, 493–507.
Article CAS PubMed PubMed Central Google Scholar
Daee, D. L., Mertz, T. M., & Shcherbakova, P. V. (2010). A cancer-associated DNA polymerase delta variant modeled in yeast causes a catastrophic increase in genomic instability. Proceedings of the National Academy of Sciences of the USA, 107, 157–162.
Article CAS PubMed Google Scholar
Dawson, K. J. (1998). Evolutionarily stable mutation rates. Journal of Theoretical Biology, 194, 143–157.
Article CAS PubMed Google Scholar
Desai, M. M., Fisher, D. S., & Murray, A. W. (2007). The speed of evolution and maintenance of variation in asexual populations. Current Biology, 17, 385–394.
Article CAS PubMed Google Scholar
Diaz, M., Watson, N. B., Turkington, G., Verkoczy, L. K., Klinman, N. R., & McGregor, W. G. (2003). Decreased frequency and highly aberrant spectrum of ultraviolet-induced mutations in the hprt gene of mouse fibroblasts expressing antisense RNA to DNA polymerase ζ. Molecular Cancer Research, 1, 836–847.
Dizdaroglu, M. (2012). Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Letters, 327, 26–47.
Article CAS PubMed Google Scholar
Drake, J. W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proceedings of the National Academy of Sciences of the USA, 88, 7160–7164.
Article CAS PubMed PubMed Central Google Scholar
Drotschmann, K., Clark, A. B., Tran, H. T., Resnick, M. A., Gordenin, D. A., & Kunkel, T. A. (1999). Mutator phenotypes of yeast strains heterozygous for mutations in the MSH2 gene. Proceedings of the National Academy of Sciences of the USA, 96, 2970–2975.
Article CAS PubMed PubMed Central Google Scholar
Ehmann, D. E., Gehring, A. M., & Walsh, C. T. (1999). Lysine biosynthesis in Saccharomyces cerevisiae: Mechanism of α-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. Biochemistry, 38, 6171–6177.
Article CAS PubMed Google Scholar
Fox, E. J., Prindle, M. J., & Loeb, L. A. (2013). Do mutator mutations fuel tumorigenesis? Cancer and Metastasis Reviews, 32, 353–361.
Article CAS PubMed Google Scholar
Funchain, P., Yeung, A., Stewart, J. L., Lin, R., Slupska, M. M., & Miller, J. H. (2000). The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics, 154, 959–970.
Article CAS PubMed PubMed Central Google Scholar
Gammie, A. E., Erdeniz, N., Beaver, J., Devlin, B., Nanji, A., & Rose, M. D. (2007). Functional characterization of pathogenic human MSH2 missense mutations in Saccharomyces cerevisiae. Genetics, 177, 707–721.
Article CAS PubMed PubMed Central Google Scholar
Gao, G., Chen, L., & Huang, C. (2014). Anti-cancer drug discovery: Update and comparisons in Yeast, Drosophila, and Zebrafish. Current Molecular Pharmacology, 7, 44–51.
Article CAS PubMed PubMed Central Google Scholar
Giraud, A., Matic, I., Tenaillon, O., Clara, A., Radman, M., Fons, M., & Taddei, F. (2001). Costs and benefits of high mutation rates: Adaptive evolution of bacteria in the mouse gut. Science, 291, 2606–2608.
Article CAS PubMed Google Scholar
Gobbini, E., Cassani, C., Villa, M., Bonetti, D., & Longhese, M. P. (2016). Functions and regulation of the MRX complex at DNA double-strand breaks. Microbial Cell, 3, 329–337.
Article CAS PubMed PubMed Central Google Scholar
Grenson, M., Mousset, M., Wiame, J. M., & Bechet, J. (1966). Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochimica Et Biophysica Acta, 127, 325–338.
Article CAS PubMed Google Scholar
Hector, R. E., Shtofman, R. L., Ray, A., Chen, B. R., Nyun, T., Berkner, K. L., & Runge, K. W. (2007). Tel1p preferentially associates with short telomeres to stimulate their elongation. Molecular Cell, 27, 851–858.
Article CAS PubMed Google Scholar
Herr, A. J., Ogawa, M., Lawrence, N. A., Williams, L. N., Eggington, J. M., Singh, M., Smith, R. A., & Preston, B. D. (2011). Mutator suppression and escape from replication error-induced extinction in yeast. PLoS Genetics, 7, e1002282.
Article CAS PubMed PubMed Central Google Scholar
Herr, A. J., Kennedy, S. R., Knowels, G. M., Schultz, E. M., & Preston, B. D. (2014). DNA replication error-induced extinction of diploid yeast. Genetics, 196, 677–691.
Article CAS PubMed PubMed Central Google Scholar
Hsieh, P., & Yamane, K. (2008). DNA mismatch repair: Molecular mechanism, cancer, and ageing. Mechanisms of Ageing and Development, 129, 391–407.
Article CAS PubMed PubMed Central Google Scholar
Huang, M. E., & Kolodner, R. D. (2005). A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Molecular Cell, 17, 709–720.
Article CAS PubMed Google Scholar
Huang, M. E., Rio, A. G., Nicolas, A., & Kolodner, R. D. (2003). A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proceedings of the National Academy of Sciences of the USA, 100, 11529–11534.
Comments (0)