Mycobacterium tuberculosis PE_PGRS45 (Rv2615c) Promotes Recombinant Mycobacteria Intracellular Survival via Regulation of Innate Immunity, and Inhibition of Cell Apoptosis

Abo-Kadoum, M. A., Assad, M., Ali, M. K., Uae, M., Nzaou, S., Gong, Z., Moaaz, A., Lambert, N., Eltoukhy, A., & Xie, J. (2021). Mycobacterium tuberculosis PE17 (Rv1646) promotes host cell apoptosis via host chromatin remodeling mediated by reduced H3K9me3 occupancy. Microbial Pathogenesis,159, 105147.

CAS  PubMed  Google Scholar 

Ali, M. K., Zhen, G., Nzungize, L., Stojkoska, A., Duan, X., Li, C., Duan, W., Xu, J., & Xie, J. (2020). Mycobacterium tuberculosis PE31 (Rv3477) attenuates host cell apoptosis and promotes recombinant M. smegmatis intracellular survival via up-regulating GTPase guanylate binding protein-1. Frontiers in Cellular and Infection. Microbiology,10, 40.

Google Scholar 

Bachhawat, N. (2018). PE-only/PE_PGRS proteins of Mycobacterium tuberculosis contain a conserved tetra-peptide sequence DEVS/DXXS that is a potential caspase-3 cleavage motif. Journal of Biosciences,43, 597–604.

CAS  PubMed  Google Scholar 

Bagcchi, S. (2023). WHO’s Global tuberculosis report 2022. The Lancet Microbe,4, e20.

PubMed  Google Scholar 

Basu, S., Pathak, S. K., Banerjee, A., Pathak, S., Bhattacharyya, A., Yang, Z., Talarico, S., Kundu, M., & Basu, J. (2007). Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by toll-like receptor 2-dependent release of Tumor necrosis factor-α. The Journal of Biological Chemistry,282, 1039–1050.

CAS  PubMed  Google Scholar 

Behar, S. M., Martin, C. J., Booty, M. G., Nishimura, T., Zhao, X., Gan, H. X., Divangahi, M., & Remold, H. G. (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology,4, 279–287.

CAS  PubMed  PubMed Central  Google Scholar 

Boom, W. H., Schaible, U. E., & Achkar, J. M. (2021). The knowns and unknowns of latent Mycobacterium tuberculosis Infection. The Journal of Clinical Investigation,131, e136222.

CAS  PubMed  PubMed Central  Google Scholar 

Cadieux, N., Parra, M., Cohen, H., Maric, D., Morris, S. L., & Brennan, M. J. (2011). Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein. Microbiology,157, 793–804.

CAS  PubMed  PubMed Central  Google Scholar 

Campuzano, J., Aguilar, D., Arriaga, K., León, J. C., Salas-Rangel, L. P., González-y-Merchand, J., Hernández-Pando, R., & Espitia, C. (2007). The PGRS domain of Mycobacterium tuberculosis PE_PGRS Rv1759c antigen is an efficient subunit vaccine to prevent reactivation in a murine model of chronic Tuberculosis. Vaccine,25, 3722–3729.

CAS  PubMed  Google Scholar 

Chai, Q., Wang, L., Liu, C. H., & Ge, B. (2020). New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cellular & Molecular Immunology,17, 901–913.

CAS  Google Scholar 

Chakaya, J., Petersen, E., Nantanda, R., Mungai, B. N., Migliori, G. B., Amanullah, F., Lungu, P., Ntoumi, F., Kumarasamy, N., Maeurer, M., et al. (2022). The WHO Global Tuberculosis 2021 Report - not so good news and turning the tide back to end TB. International Journal of Infectious Diseases,124, S26–S29.

PubMed  PubMed Central  Google Scholar 

Cilfone, N. A., Ford, C. B., Marino, S., Mattila, J. T., Gideon, H. P., Flynn, J. L., Kirschner, D. E., & Linderman, J. J. (2015). Computational modeling predicts IL-10 control of lesion sterilization by balancing early host immunity-mediated antimicrobial responses with caseation during Mycobacterium tuberculosis Infection. Journal of Immunology,194, 664–677.

CAS  Google Scholar 

Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature,393, 537–544.

CAS  PubMed  ADS  Google Scholar 

Cooper, A. M., & Khader, S. A. (2008). The role of cytokines in the initiation, expansion, and control of cellular immunity to Tuberculosis. Immunological Reviews,226, 191–204.

CAS  PubMed  PubMed Central  Google Scholar 

Dan, L., Jianping, X., Ruzhen, G., & Honghai, W. (2009). Cloning and characterization of Rv0621 gene related to surfactant stress tolerance in Mycobacterium tuberculosis. Molecular Biology Reports,36, 1811–1817.

PubMed  Google Scholar 

Dao, D. N., Kremer, L., Guérardel, Y., Molano, A., Jacobs, W. R., Jr., Porcelli, S. A., & Briken, V. (2004). Mycobacterium tuberculosis Lipomannan induces apoptosis and interleukin-12 production in macrophages. Infection and Immunity,72, 2067–2074.

CAS  PubMed  PubMed Central  Google Scholar 

de Martino, M., Lodi, L., Galli, L., & Chiappini, E. (2019). Immune response to Mycobacterium tuberculosis: A narrative review. Frontiers in Pediatrics,7, 350.

PubMed  PubMed Central  Google Scholar 

Deng, W., Long, Q., Zeng, J., Li, P., Yang, W., Chen, X., & Xie, J. (2017). Mycobacterium tuberculosis PE_PGRS41 enhances the intracellular survival of M. Smegmatis within macrophages via blocking innate immunity and inhibition of host defense. Scientific Reports,7, 46716.

PubMed  PubMed Central  ADS  Google Scholar 

Dheenadhayalan, V., Delogu, G., Sanguinetti, M., Fadda, G., & Brennan, M. J. (2006). Variable expression patterns of Mycobacterium tuberculosis PE_PGRS genes: Evidence that PE_PGRS16 and PE_PGRS26 are inversely regulated in vivo. Journal of Bacteriology,188, 3721–3725.

CAS  PubMed  PubMed Central  Google Scholar 

Ehrt, S., & Schnappinger, D. (2009). Mycobacterial survival strategies in the phagosome: Defence against host stresses. Cellular Microbiology,11, 1170–1178.

CAS  PubMed  PubMed Central  Google Scholar 

Fairbairn, I. P. (2004). Macrophage apoptosis in host immunity to mycobacterial Infections. Biochemical Society Transactions,32, 496–498.

CAS  PubMed  Google Scholar 

Feng, L., Hu, J., Zhang, W., Dong, Y., Xiong, S., & Dong, C. (2020). RELL1 inhibits autophagy pathway and regulates Mycobacterium tuberculosis survival in macrophages. Tuberculosis,120, 101900.

CAS  PubMed  Google Scholar 

Ferguson, J. S., Voelker, D. R., McCormack, F. X., & Schlesinger, L. S. (1999). Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. Journal of Immunology,163, 312–321.

CAS  Google Scholar 

Fratazzi, C., Arbeit, R. D., Carini, C., Balcewicz-Sablinska, M. K., Keane, J., Kornfeld, H., & Remold, H. G. (1999). Macrophage apoptosis in mycobacterial Infections. Journal of Leukocyte Biology,66, 763–764.

CAS  PubMed  Google Scholar 

Gey van Pittius, N. C., Sampson, S. L., Lee, H., Kim, Y., van Helden, P. D., & Warren, R. M. (2006). Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evolutionary Biology,6, 95.

PubMed  PubMed Central  Google Scholar 

Gong, Z., Yang, W., Zhang, H., Xiang, X., Zeng, J., Han, S., Yang, J., & Xie, J. (2020). Mycobacterium tuberculosis Rv3717 enhances the survival of Mycolicibacterium smegmatis by inhibiting host innate immune and caspase-dependent apoptosis. Infection Genetics and Evolution,84, 104412.

CAS  Google Scholar 

Hirsch, C. S., Toossi, Z., Othieno, C., Johnson, J. L., Schwander, S. K., Robertson, S., Wallis, R. S., Edmonds, K., Okwera, A., Mugerwa, R., et al. (1999). Depressed T-cell interferon-γ responses in pulmonary Tuberculosis: Analysis of underlying mechanisms and modulation with therapy. The Journal of Infectious Diseases,180, 2069–2073.

CAS  PubMed  Google Scholar 

Houben, R. M., & Dodd, P. J. (2016). The global burden of latent Tuberculosis Infection: A re-estimation using mathematical modelling. PLoS Medicine,13, e1002152.

PubMed  PubMed Central  Google Scholar 

Huang, Y., Wang, Y., Bai, Y., Wang, Z. G., Yang, L., & Zhao, D. (2010). Expression of PE_PGRS 62 protein in Mycobacterium smegmatis decrease mRNA expression of proinflammatory cytokines IL-1β, IL-6 in macrophages. Molecular and Cellular Biochemistry,340, 223–229.

CAS  PubMed  Google Scholar 

Huang, Y., Zhou, X., Bai, Y., Yang, L., Yin, X., Wang, Z., & Zhao, D. (2012). Phagolysosome maturation of macrophages was reduced by PE_PGRS 62 protein expressing in Mycobacterium smegmatis and induced in IFN-γ priming. Veterinary Microbiology,160, 117–125.

CAS  PubMed  Google Scholar 

Johansson, J., & Curstedt, T. (1997). Molecular structures and interactions of pulmonary surfactant components. European Journal of Biochemistry,244, 675–693.

CAS  PubMed  Google Scholar 

Jouanguy, E., Döffinger, R., Dupuis, S., Pallier, A., Altare, F., & Casanova, J. L. (1999). IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Current Opinion in Immunology,11, 346–351.

CAS  PubMed  Google Scholar 

Lakshminarayan, H., Narayanan, S., Bach, H., Sundaram, K. G., & Av-Gay, Y. (2008). Molecular cloning and biochemical characterization of a serine threonine protein kinase, PknL, from Mycobacterium tuberculosis. Protein Expression and Purification,58, 309–317.

CAS  PubMed  Google Scholar 

Lam, A., Prabhu, R., Gross, C. M., Riesenberg, L. A., Singh, V., & Aggarwal, S. (2017). Role of apoptosis and autophagy in Tuberculosis. American Journal of Physiology Lung Cellular and Molecular Physiology,313, L218–L229.

PubMed  PubMed Central  Google Scholar 

Li, J., Chai, Q. Y., Zhang, Y., Li, B. X., Wang, J., Qiu, X. B., & Liu, C. H. (2015). Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling. Journal of Immunology,194, 3756–3767.

CAS  Google Scholar 

Lin, P. L., & Flynn, J. L. (2010). Understanding latent Tuberculosis: A moving target. Journal of Immunology,185, 15–22.

CAS  ADS  Google Scholar 

Liu, D., Hao, K., Wang, W., Peng, C., Dai, Y., Jin, R., Xu, W., He, L., Wang, H., & Wang, H. (2017). Rv2629 overexpression delays Mycobacterium smegmatis and Mycobacteria tuberculosis entry into log-phase and increases pathogenicity of Mycobacterium smegmatis in mice. Frontiers in Microbiology,8, 2231.

PubMed  PubMed Central  Google Scholar 

Long, Q., Xiang, X., Yin, Q., Li, S., Yang, W., Sun, H., Liu, Q., Xie, J., & Deng, W. (2019). PE_PGRS62 promotes the survival of Mycobacterium smegmatis within macrophages via disrupting ER stress-mediated apoptosis. Journal of Cellular Physiology,234, 19774–19784.

CAS  PubMed  Google Scholar 

Malik, Z. A., Iyer, S. S., & Kusner, D. J. (2001). Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: Contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. Journal of Immunology,166, 3392–3401.

CAS  Google Scholar 

Manganelli, R., Dubnau, E., Tyagi, S., Kramer, F. R., & Smith, I. (1999). Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Molecular Microbiology,31, 715–724.

CAS  PubMed  Google Scholar 

Medha, Joshi, H., Sharma, S., & Sharma, M. (2023a). Elucidating the function of hy

留言 (0)

沒有登入
gif