Effects of Feather Hydrolysates Generated by Probiotic Bacillus licheniformis WHU on Gut Microbiota of Broiler and Common carp

Alahyaribeik, S., & Ullah, A. (2020). Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin. International Journal of Biological Macromolecules, 148, 449–456.

Article  CAS  PubMed  Google Scholar 

Al-Shawi, S. G., Dang, D. S., Yousif, A. Y., Al-Younis, Z. K., Najm, T. A., & Matarneh, S. K. (2020). The potential use of probiotics to improve animal health, efficiency, and meat quality: A review. Agriculture, 10, 452.

Article  CAS  Google Scholar 

Anadón, A., Ares, I., Martínez-Larrañaga, M. R., & Martínez, M. A. (2019). Prebiotics and probiotics in feed and animal health. In R. Gupta, A. Srivastava, & R. Lall (Eds.), Nutraceuticals in veterinary medicine (pp. 261–285). Springer.

Chapter  Google Scholar 

Bhari, R., Kaur, M., & Sarup Singh, R. (2021). Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Current Microbiology, 78, 2212–2230.

Article  CAS  PubMed  Google Scholar 

Callegaro, K., Brandelli, A., & Daroit, D. J. (2019). Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Management, 95, 399–415.

Article  CAS  PubMed  Google Scholar 

Coleman, S. W., & Moore, J. E. (2003). Feed quality and animal performance. Field Crops Research, 84, 17–29.

Article  Google Scholar 

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685–688.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duman, M., Mulet, M., Altun, S., Saticioglu, I. B., Ozdemir, B., Ajmi, N., Lalucat, J., & García-Valdés, E. (2021). The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture, 535, 736369.

Article  CAS  Google Scholar 

Gryaznova, M., Dvoretskaya, Y., Burakova, I., Syromyatnikov, M., Popov, E., Kokina, A., Mikhaylov, E., & Popov, V. (2022). Dynamics of changes in the gut microbiota of healthy mice fed with lactic acid bacteria and Bifidobacteria. Microorganisms, 10, 1020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guinane, C. M., Tadrous, A., Fouhy, F., Ryan, C. A., Dempsey, E. M., Murphy, B., Andrews, E., Cotter, P. D., Stanton, C., & Ross, R. P. (2013). Microbial composition of human appendices from patients following appendectomy. Mbio, 4, e00366-12.

Article  PubMed  PubMed Central  Google Scholar 

Hassan, M. A., Abol-Fotouh, D., Omer, A. M., Tamer, T. M., & Abbas, E. (2020). Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. International Journal of Biological Macromolecules, 154, 567–583.

Article  CAS  PubMed  Google Scholar 

Isler, B., Kidd, T. J., Stewart, A. G., Harris, P., & Paterson, D. L. (2020). Achromobacter infections and treatment options. Antimicrobial Agents and Chemotherapy, 64, e01025-e1120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ke, F., Gao, Y., Liu, L., Zhang, C., Wang, Q., & Gao, X. (2020). Comparative analysis of the gut microbiota of grass carp fed with chicken faeces. Environmental Science and Pollution Research, 27, 32888–32898.

Article  CAS  PubMed  Google Scholar 

Ke, F., Xie, P., Yang, Y., Yan, L., Guo, A., Yang, J., Zhang, J., Liu, L., Wang, Q., & Gao, X. (2021). Effects of nisin, cecropin, and Penthorum chinense Pursh on the intestinal microbiome of common carp (Cyprinus carpio). Frontiers in Nutrition, 8, 729437.

Article  PubMed  PubMed Central  Google Scholar 

Korniłłowicz-Kowalska, T., & Bohacz, J. (2011). Biodegradation of keratin waste: Theory and practical aspects. Waste Management, 31, 1689–1701.

Article  PubMed  Google Scholar 

Koyanagi, T., Sakamoto, M., Takeuchi, Y., Ohkuma, M., & Izumi, Y. (2010). Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. Journal of Oral Microbiology, 24, 2.

Google Scholar 

Kyriakis, S. C., Tsiloyiannis, V. K., Vlemmas, J., Sarris, K., Tsinas, A. C., Alexopoulos, C., & Jansegers, L. (1999). The effect of probiotic LSP 122 on the control of post-weaning diarrhoea syndrome of piglets. Research in Veterinary Science, 67, 223–228.

Article  CAS  PubMed  Google Scholar 

Lei, K., Li, Y. L., Yu, D. Y., Rajput, I. R., & Li, W. F. (2013). Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poultry Science, 92, 2389–2395.

Article  CAS  PubMed  Google Scholar 

Lemes, A. C., Sala, L., Ores Jda, C., Braga, A. R., Egea, M. B., & Fernandes, K. F. (2016). A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Science, 17, 950.

Article  Google Scholar 

Li, Q. (2019). Progress in microbial degradation of feather waste. Frontiers in Microbiology, 10, 2717.

Article  PubMed  PubMed Central  Google Scholar 

Li, Y., Liu, M., Zhou, J., Hou, B., Su, X., Liu, Z., Yuan, J., & Li, M. (2019). Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Beneficial Microbes, 10, 543–553.

Article  CAS  PubMed  Google Scholar 

Lin, X., Kelemen, D. W., Miller, E. S., & Shih, J. C. (1995). Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Applied Environmental Microbiology, 61, 1469–1474.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Meyer, B., Bessei, W., Vahjen, W., Zentek, J., & Harlander-Matauschek, A. (2012). Dietary inclusion of feathers affects intestinal microbiota and microbial metabolites in growing Leghorn-type chickens. Poultry Science, 91, 1506–1513.

Article  CAS  PubMed  Google Scholar 

Mikx, F., & De Jong, M. (1987). Keratinolytic activity of cutaneous and oral bacteria. Infection and Immunity, 55, 621–625.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muras, A., Romero, M., Mayer, C., & Otero, A. (2021). Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology, 41, 609–627.

Article  CAS  PubMed  Google Scholar 

Pan, X., Yang, J., Xie, P., Zhang, J., Ke, F., Guo, X., Liang, M., Liu, L., Wang, Q., & Gao, X. (2021). Enhancement of activity and thermostability of keratinase from Pseudomonas aeruginosa CCTCC AB2013184 by directed evolution with noncanonical amino acids. Frontiers in Bioenginering and Biotechnology, 9, 770907.

Article  Google Scholar 

Qi, X., Zhang, Y., Zhang, Y., Luo, F., Song, K., Wang, G., & Ling, F. (2023). Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome, 11, 135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahimnahal, S., Meimandipour, A., Fayazi, J., Asghar Karkhane, A., Shamsara, M., Beigi Nassiri, M., Mirzaei, H., Hamblin, M. R., Tarrahimofrad, H., Bakherad, H., et al. (2023). Biochemical and molecular characterization of novel keratinolytic protease from Bacillus licheniformis (KRLr1). Frontiers in Microbiology, 14, 1132760.

Article  PubMed  PubMed Central  Google Scholar 

Scanes, C. G. (2018). Animal agriculture: Livestock, poultry, and fish aquaculture. In C. G. Scanes & S. R. Toukhsati (Eds.), Animals and human society (pp. 133–179). Academic Press.

Chapter  Google Scholar 

Shavandi, A., Silva, T. H., Bekhit, A. A., & Bekhit, A. E. A. (2017). Keratin: Dissolution, extraction and biomedical application. Biomaterial Science, 5, 1699–1735.

Article  CAS  Google Scholar 

Vitali, B., Pugliese, C., Biagi, E., Candela, M., Turroni, S., Bellen, G., Donders, G. G., & Brigidi, P. (2007). Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR. Applied Environmental Microbiology, 73, 5731–5741.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wang, A., Zhang, Z., Ding, Q., Yang, Y., Bindelle, J., Ran, C., & Zhou, Z. (2021). Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes, 13, 1–15.

Article  PubMed  Google Scholar 

Wang, S., Song, F., Gu, H., Shu, Z., Wei, X., Zhang, K., Zhou, Y., Jiang, L., Wang, Z., Li, J., Luo, H., & Liang, W. (2022). Assess the diversity of gut microbiota among healthy adults for forensic application. Microbial Cell Factories, 21, 46.

Article  PubMed  PubMed Central  Google Scholar 

Ward, T., Larson, J., Meulemans, J., Hillmann, B., Lynch, J., Sidiropoulos, D., Spear, J. R., Caporaso, G., Blekhman, R., Knight, R., et al. (2017). BugBase predicts organism-level microbiome phenotypes. Biorxiv. https://doi.org/10.1101/133462

Article  Google Scholar 

Weyand, N. J. (2017). Neisseria models of infection and persistence in the upper respiratory tract. Pathogens and Disease. https://doi.org/10.1093/femspd/ftx031

Article  PubMed  Google Scholar 

Wu, L., Lao, X., Wu, Y., Zhang, J., Liang, M., Yang, Y., & Gao, X. (2023). Insights into effects of sodium phytate on gut microbiome of mice by high-throughput sequencing. Biotechnology & Biotechnological Equipment, 37, 2220825.

Article  Google Scholar 

Wu, L., Ran, L., Wu, Y., Liang, M., Zeng, J., Ke, F., Wang, F., Yang, J., Lao, X., Liu, L., et al. (2022). Oral administration of 5-Hydroxytryptophan restores gut microbiota dysbiosis in a mouse model of depression. Frontiers in Microbiology, 13, 864571.

Article  PubMed 

留言 (0)

沒有登入
gif