Insights Into Electrophysiological Metrics of Cochlear Health in Cochlear Implant Users Using a Computational Model

van den Honert C, Mortimer JT (1979) The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann Biomed Eng 7:117–125. https://doi.org/10.1007/BF02363130

Article  PubMed  Google Scholar 

Shepherd RK, Javel E (1999) Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear Res 130(1–2):171–188. https://doi.org/10.1016/S0378-5955(99)00011-8

Article  CAS  PubMed  Google Scholar 

Miller CA, Robinson BK, Rubinstein JT, Abbas PJ, Runge-Samuelson CL (2001) Auditory nerve responses to monophasic and biphasic electric stimuli. Hear Res 151:79–94. https://doi.org/10.1016/S0300-2977(00)00082-6

Article  CAS  PubMed  Google Scholar 

Nadol JB (1990) Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear Res 49:141–154. https://doi.org/10.1016/0378-5955(90)90101-t

Article  PubMed  Google Scholar 

Nadol JB (1997) Patterns of neural degeneration in the human cochlea and auditory nerve: Implications for cochlear implantation. Otolaryngol Head Neck Surg 117:220–228. https://doi.org/10.1016/s0194-5998(97)70178-5

Article  PubMed  Google Scholar 

Hardie NA, Shepherd RK (1999) Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res 128:147–165. https://doi.org/10.1016/S0378-5955(98)00209-3

Article  CAS  PubMed  Google Scholar 

Ramekers D, Klis SFL, Versnel H (2020) Simultaneous rather than retrograde spiral ganglion cell degeneration following ototoxically induced hair cell loss in the guinea pig cochlea. Hear Res 390:107928. https://doi.org/10.1016/j.heares.2020.107928

Article  PubMed  Google Scholar 

Nadol JB, Young YS, Glynn RJ (2021) Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 98:411–416. https://doi.org/10.1177/000348948909800602

Article  Google Scholar 

Stypulkowski PH, van den Honert C (1984) Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hear Res 14:205–223. https://doi.org/10.1016/0378-5955(84)90051-0

Article  CAS  PubMed  Google Scholar 

Brown CJ, Abbas PJ, Gantz B (1990) Electrically evoked whole-nerve action potentials: data from human cochlear implant users. J Acoust Soc Am 88(3):1385–1391. https://doi.org/10.1121/1.399716

Article  CAS  PubMed  Google Scholar 

Shepherd RK, Javel E (1997) Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108(1–2):112–144. https://doi.org/10.1016/S0378-5955(97)00046-4

Article  CAS  PubMed  Google Scholar 

Prado-Guitierrez P, Fewster LM, Heasman JM, McKay CM, Shepherd RK (2006) Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival. Hear Res 215:47–55. https://doi.org/10.1016/j.heares.2006.03.006

Article  PubMed  PubMed Central  Google Scholar 

Macherey O, Carlyon RP, van Wieringen A, Deeks JM, Wouters J (2008) Higher sensitivity of human auditory nerve fibers to positive electrical currents. J Assoc Res Otolaryngol 9(2):241–251. https://doi.org/10.1007/s10162-008-0112-4

Article  PubMed  PubMed Central  Google Scholar 

Ramekers D, Versnel H, Strahl SB, Smeets EM, Klis SFL, Grolman W (2014) Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration. J Assoc Res Otolaryngol 15:187–202. https://doi.org/10.1007/s10162-013-0440-x

Article  PubMed  PubMed Central  Google Scholar 

Schvartz-Leyzac KC, Pfingst BE (2016) Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Hear Res 341:50–65. https://doi.org/10.1016/j.heares.2016.08.002

Article  PubMed  PubMed Central  Google Scholar 

Carlyon RP, Cosentino S, Deeks JM, Parkinson W, Arenberg JA (2018) Effect of stimulus polarity on detection thresholds in cochlear implant users: relationships with average threshold, gap detection, and rate discrimination. J Assoc Res Otolaryngol 19:559–567. https://doi.org/10.1007/s10162-018-0677-5

Article  PubMed  PubMed Central  Google Scholar 

Hughes ML, Choi S, Glickman E (2018) What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients? Hear Res 359:50–63. https://doi.org/10.1016/j.heares.2017.12.015

Article  PubMed  Google Scholar 

Skidmore J, Xu L, Chao X, Riggs WJ, Pellittieri A, Vaughan C, Ning X, Wang R, Luo J, He S (2020) Prediction of the functional status of the cochlear nerve in individual cochlear implant users using machine learning and electrophysiological measures. Ear Hear 42(1):180–192. https://doi.org/10.1097/AUD.0000000000000916

Article  PubMed Central  Google Scholar 

Swiderski DL, Colesa DJ, Hughes AP, Raphael Y, Pfingst BE (2020) Relationships between intrascalar tissue, neuron survival, and cochlear implant function. J Assoc Res Otolaryngol 21:337–352. https://doi.org/10.1007/s10162-020-00761-4

Article  PubMed  PubMed Central  Google Scholar 

Skidmore J, Ramekers D, Bruce IC, He S (2022) Comparison of response properties of the electrically stimulated auditory nerve reported in human listeners and in animal models. Hear Res 426:108643. https://doi.org/10.1016/j.heares.2022.108643

Rattay F, Lutter P, Felix H (2001) A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res 153(1–2):43–63. https://doi.org/10.1016/S0378-5955(00)00256-2

Article  CAS  PubMed  Google Scholar 

Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE (2023 ) Cochlear health and cochlear-implant function. J Assoc Res Otolaryngol 24:5–29. https://doi.org/10.1007/s10162-022-00882-y

Arenberg Bierer J (2010) Probing the electrode-neuron interface with focused cochlear implant stimulation. Trends Amplif 14:84–95. https://doi.org/10.1177/1084713810375249

Article  Google Scholar 

Goehring T, Archer-Boyd A, Deeks JM, Arenberg JG, Carlyon RP (2019) A site-selection strategy based on polarity sensitivity for cochlear implants: effects on spectro-temporal resolution and speech perception. J Assoc Res Otolaryngol 20:431–448. https://doi.org/10.1007/s10162-019-00724-4

Article  PubMed  PubMed Central  Google Scholar 

McKay CM, Smale N (2017) The relation between ECAP measurements and the effect of rate on behavioral thresholds in cochlear implant users. Hear Res 346:62–70. https://doi.org/10.1016/j.heares.2017.02.009

Article  PubMed  Google Scholar 

Schvartz-Leyzac KC, Holden TA, Zwolan TA, Arts HA, Firszt JB, Buswinka CJ, Pfingst BE (2020) Effects of electrode location on estimates of neural health in humans with cochlear implants. J Assoc Res Otolaryngol 21(3):259–275. https://doi.org/10.1007/s10162-020-00749-0

Article  PubMed  PubMed Central  Google Scholar 

Brochier T, McKay CM, Carlyon RP (2021) Interpreting the effect of stimulus parameters on the electrically evoked compound action potential and on neural health estimates. J Assoc Res Otolaryngol 22:81–94. https://doi.org/10.1007/s10162-020-00774-z

Article  PubMed  Google Scholar 

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ et al (2020) Array programming with NumPy. Nature 585:357–362. https://doi.org/10.1038/s41586-020-2649-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55

Article  Google Scholar 

Yoshimura H, Moteki H, Sy N, Si U (2020) Electric-acoustic stimulation with longer electrodes for potential deterioration in low-frequency hearing. Acta Otolaryngol 140:624–630. https://doi.org/10.1080/00016489.2020.1760351

Article  Google Scholar 

Greenwood DD (1990) A cochlear frequency-position function for several species–29 years later. J Acoust Soc Am 87:2592–2605. https://doi.org/10.1121/1.399052

Article  CAS  PubMed  Google Scholar 

Stakhovskaya O, Sridhar D, Bonham BH, Leake PA (2007) Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol 8(2):220–233. https://doi.org/10.1007/s10162-007-0076-9

Article  PubMed  PubMed Central  Google Scholar 

Schurzig D, Timm ME, Majdani O, Lenarz T, Rau TS (2021) The use of clinically measurable cochlear parameters in cochlear implant surgery as indicators for size, shape, and orientation of the scala tympani. Ear Hear 42(4):1034–1041. https://doi.org/10.1097/AUD.0000000000000998

Article  PubMed  Google Scholar 

Spoendlin H, Schrott A (1989) Analysis of the human auditory nerve. Hear Res 43:25–38. https://doi.org/10.1016/0378-5955(89)90056-7

Article  CAS  PubMed  Google Scholar 

Black RC, Clark GM, Tong YC, Patrick JF (1983) Current distributions in cochlear stimulation. Ann. N.Y. Acad Sci 405:137–145. https://doi.org/10.1111/j.1749-6632.1983.tb31626.x

留言 (0)

沒有登入
gif