Comprehensive Analysis of Differentially Expressed mRNA and Long Non-Coding RNAs in Ovaries of Ovis Aries

La, Y.F., He, X.Y., Zhang, L.P., et al., Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and circRNA in the uterus of seasonal reproduction sheep, Genes (Basel), 2020, vol. 11, no. 3, р. 301. https://doi.org/10.3390/genes11030301

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, L., Zhang, P.J. and Lu, W.F., LncRNA MALAT1 regulates mouse granulosa cell apoptosis and 17β-estradiol synthesis via regulating miR-205/CREB1 axis, Biomed. Res. Int., 2021, р. 6671814. https://doi.org/10.1155/2021/6671814

Li, T., Hu, D., and Gong, Y.H., Identification of potential lncRNAs and co-expressed mRNAs in gestational diabetes mellitus by RNA sequencing, J. Matern.-Fetal Neonat. Med., 2021.https://doi.org/10.1080/14767058.2021.1875432

Book  Google Scholar 

Su, T., Yu, H.L., Luo, G., et al., The interaction of lncRNA XLOC-2222497, AKR1C1, and progesterone in porcine endometrium and pregnancy, Int. J. Mol. Sci., 2020, vol. 21, no. 9, р. 3232. https://doi.org/10.3390/ijms21093232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi, M.R., Yu, B.X., Yu, H.Y., et al., Integrated analysis of a ceRNA network reveals potential prognostic lncRNAs in gastric cancer, Cancer Med., 2020, vol. 9, no. 5, pp. 1798—1817.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, X.J., Xue, Y.J., Cong, H., et al., Circulating lncRNA DANCR as a potential auxiliary biomarker for the diagnosis and prognostic prediction of colorectal cancer, Biosci. Rep., 2020, vol. 40, no. 3, р. BSR20191481. https://doi.org/10.1042/BSR20191481

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J.D., Zhou, H.S., Tu, X.X., et al., Prediction of competing endogenous RNA coexpression network as prognostic markers in AML, Aging, 2019, vol. 11, no. 10, pp. 3333—3347.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, X., Li, F.Z., Wang, F., et al., Genome-wide differential expression profiling of mRNAs and lncRNAs associated with prolificacy in Hu sheep, Biosci. Rep., 2018, vol. 38, no. 2, р. BSR20171350.https://doi.org/10.1042/BSR20171350

Article  CAS  PubMed  PubMed Central  Google Scholar 

La, Y.F., Tang, J.S., He, X.Y., et al., Identification and characterization of mRNAs and lncRNAs in the uterus of polytocous and monotocous Small Tail Han sheep (Ovis aries), Peer J., 2019, vol. 7, р. e6938. https://doi.org/10.7717/peerj.6938

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ling, Y.H., Xu, L.N., Zhu, L., et al., Identification and analysis of differentially expressed long non-coding RNAs between multiparous and uniparous goat (Capra hircus) ovaries, PLoS One, 2017, vol. 12, no. 9, р. e0183163. https://doi.org/10.1371/journal.pone.0183163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, W.H., Cui, Z.L., and Wang, J.H., Identification of potential disease biomarkers in the ovaries of Dolang sheep from Xinjiang using transcriptomics and bioinformatics approaches, Indian J. Anim. Res., 2021, vol. 55, no. 4, pp. 412—419.

Google Scholar 

Shukla, P., Rajput, R., Kumar, R., et al., Biochemical composition of amniotic fluid during different stages of gestation in Gaddi sheep, Indian J. Anim. Res., 2019, vol. 53, no. 2, pp. 178—180.

Google Scholar 

Peter, J.A.C., Christopher, J.F., Naohisa, G., et al., The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants, Nucleic Acids Res., 2010, vol. 38, no. 6, pp. 1767—1771.

Article  Google Scholar 

Kim, D., Langmead, B., and Salzberg, S.L., HISAT: a fast spliced aligner with low memory requirements, Nat. Methods, 2015, vol. 12, no. 4, pp. 357—360.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benelli, M., Pescucci, C., Marseglia, G., et al., Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript, Bioinformatics, 2012, vol. 28, no. 24, pp. 3232—3239.

Article  CAS  PubMed  Google Scholar 

Shen, S.H., Park, J.W., Lu, Z.X., et al., rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 51, pp. E5593—E5601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, no. 4, pp. 357—369.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, B. and Dewey, C.N., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinf., 2011. https://doi.org/10.1186/1471-2105-12-323

Book  Google Scholar 

Kolde, R., Implementation of Heatmaps That Offers More Control over Dimensions and Appearance, Version 1.0.12, 2019.

Michael, I.L., Huber, W., and Anders, S., Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2, Genome Biol., 2014, vol. 15, no. 12, p. 550. https://doi.org/10.1186/s13059-014-0550-8

Article  CAS  Google Scholar 

Benjamini, Y. and Yekutieli, D., The control of the false discovery rate in multiple testing under dependency, Ann. Stat., 2001, vol. 29, no. 4, pp. 1165—1188.

Article  Google Scholar 

Xie, C., Mao, X.Z., Huang, J.J., et al., KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases, Nucleic Acids Res., 2011, vol. 39, web server issue, pp. W316—W322.

Livak, K.L. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 2001, vol. 25, no. 4, pp. 402—408.

Article  CAS  PubMed  Google Scholar 

Li, X.Y., Ao, J.P. and Wu, J., Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells, Oncotarget, 2017, vol. 8, no. 16, pp. 26573—26590.

Article  PubMed  PubMed Central  Google Scholar 

Mohammad, R.B., Batool, H., Babak, A., et al., In silico prediction of long intergenic non-coding RNAs in sheep, Genome, 2016, vol. 59, no. 4, pp. 263—275.

Article  Google Scholar 

Mohammad, R.B. and Seyed, A.S., Identification and expression analysis of long noncoding RNAs in Fat-Tail of sheep breeds, G3 (Bethesda), 2019, vol. 9, no. 4, pp. 1263—1276.

Bao, Y.J., Yao, X.L., Li, X.D., et al., INHBA transfection regulates proliferation, apoptosis and hormone synthesis in sheep granulosa cells, Theriogenology, 2021, no. 175, pp. 111—122.

Brewster, J.L., Martin, S.L., Toms, J., et al., Deletion of Dad1 in mice induces an apoptosis-associated embryonic death, Genesis, 2000, vol. 26, no. 4, pp. 271—278.

Article  CAS  PubMed  Google Scholar 

Lan, R.X., Ge, D.X., Liu, Y.Z., et al., Dcx expression defines a subpopulation of Gdf5+ cells with chondrogenic potentials in E12.5 mouse embryonic limbs, Biochem. Biophys. Rep., 2022, vol. 29, р. 101200. https://doi.org/10.1016/j.bbrep.2022.101200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Umer, S., Zhao, S.J., Sammad, A., et al., AMH: could it be used as a biomarker for fertility and superovulation in domestic animals, Genes (Basel), 2019, 10, no. 12, р. 1009. https://doi.org/10.3390/genes10121009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Françoise, M., Michel, G.D., Valery, M., et al., Oxytocin signaling in the early life of mammals: link to neurodevelopmental disorders associated with ASD, Curr. Top. Behav. Neurosci., 2018, no. 35, pp. 239—268.

Zhao, L., Zheng, X.L., Liu, J.F., et al., PPAR signaling pathway in the first trimester placenta from in vitro fertilization and embryo transfer, Biomed. Pharmacother., 2019, no. 118, р. 109251. https://doi.org/10.1016/j.biopha.2019.109251

Zhu, H.Z., Yan, H.Y., Ma, J., et al., CCAL1 enhances osteoarthritis through the NF-κB/AMPK signaling pathway, FEBS Open Bio, 2020, vol. 10, no. 12, pp. 2553—2563.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcy, A.K. and Staci, D.B., The inflammatory event of birth: how oxytocin signaling may guide the development of the brain and gastrointestinal system, Front. Neuroendocrinol., 2019, no. 55, р. 100794.https://doi.org/10.1016/j.yfrne.2019.100794

Vaidyanathan, R., and Hammock, E.A., Oxytocin receptor dynamics in the brain across development and species, Dev. Neurobiol., 2017, vol. 77, no. 2, pp. 143—157.

Article  CAS  PubMed  Google Scholar 

Silvia, R., Mateusz, C.A., Francesca, G., et al., Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons, eLife, 2017, no. 6, р. e22466.https://doi.org/10.7554/eLife.22466

留言 (0)

沒有登入
gif