Serine metabolism in macrophage polarization

Smith TD, Tse MJ, Read EL, et al. Regulation of macrophage polarization and plasticity by complex activation signals. Integr Biol. 2016;8:946–55.

Article  CAS  Google Scholar 

Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017;38:395–406.

Article  PubMed  Google Scholar 

Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021;81:1201–8.

Article  CAS  PubMed  Google Scholar 

Jung J, Zeng H, Horng T. Metabolism as a guiding force for immunity. Nat Cell Biol. 2019;21:85–93.

Article  CAS  PubMed  Google Scholar 

Galli G, Saleh M. Immunometabolism of macrophages in bacterial infections. Front Cell Infect Microbiol. 2020;10(3):607–50.

Google Scholar 

Soto-Heredero G, Gomez de Heras MM, et al. Glycolysis—a key player in the inflammatory response. FEBS J. 2020;287:3350–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao X, Lee K, Reid MA, et al. Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep. 2018;22:3507–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muthusamy T, et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature. 2020;586:790–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neame S, Safory H, Radzishevsky I, Touitou A. The NMDA receptor activation by D-serine and glycine is controlled by an astrocytic Phgdh-dependent serine shuttle. P Natl Acad Sci USA. 2019;116:20736–42.

Article  CAS  Google Scholar 

I Fernandez Moncada, U Fundazuri, G Lavanco. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes. bioRxiv. 2023;12:143–58.

Google Scholar 

Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16:650–62.

Article  CAS  PubMed  Google Scholar 

Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25:27–42.

Article  CAS  PubMed  Google Scholar 

Reid MA, Allen AE, Liu S, Liberti MV, Liu P, Liu X, et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun. 2018;9(1):5442. https://doi.org/10.1038/s41467-018-07868-6.

Article  CAS  Google Scholar 

Mehrmohamadi M, Liu X, Shestov AA, et al. Characterization of the usage of the serine metabolic network in human cancer. Cell Rep. 2014;9:1507–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy JP, Giacomantonio MA, Paulo JA, et al. The NAD(+) salvage pathway supports PHGDH-driven serine biosynthesis. Cell Rep. 2018;24:2381–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman AC, Maddocks ODK. Serine and functional metabolites in cancer. Trends Cell Biol. 2017;27:645–57.

Article  CAS  PubMed  Google Scholar 

Fan J, et al. Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem Biol. 2015;10:510–6.

Article  CAS  PubMed  Google Scholar 

Baksh SC, et al. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat Cell Biol. 2020;22:779–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between metabolism and cancer biology. Cell. 2017;168:657–69.

Article  CAS  PubMed  Google Scholar 

Mayers JR, Vander Heiden MG. Nature and nurture: what determines tumor metabolic phenotypes? Cancer Res. 2017;77:3131–4.

Article  CAS  PubMed  Google Scholar 

Rodriguez AE, Ducker GS, Billingham LK, et al. Serine metabolism supports macrophage IL-1beta production. Cell Metab. 2019;29:1003–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu W, Wang Z, Zhang K, et al. One-carbon metabolism supports s-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell. 2019;75:1147–60.

Article  CAS  PubMed  Google Scholar 

Kurita K, Ohta H, Shirakawa I, Tanaka M, Kitaura Y, et al. Macrophages rely on extracellular serine to suppress aberrant cytokine production. Sci Rep. 2021;11:11137–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Goede KE, Harber KJ, Gorki FS, et al. d-2-Hydroxyglutarate is an anti-inflammatory immunometabolite that accumulates in macrophages after TLR4 activation. Biochim Biophys Acta Mol Basis Dis. 2022;1868:166427–38.

Article  PubMed  Google Scholar 

Shen L, Hu P, Zhang Y, Ji Z, Shan X, et al. Serine metabolism antagonizes antiviral innate immunity by preventing ATP6V0d2-mediated YAP lysosomal degradation. Cell Metab. 2021;33:971–87.

Article  CAS  PubMed  Google Scholar 

Wilson JL, Nägele T, Linke M, et al. Inverse data-driven modeling and multiomics analysis reveals phgdh as a metabolic checkpoint of macrophage polarization and proliferation. Cell Rep. 2020;30:1542–64.

Article  CAS  PubMed  Google Scholar 

Raines LN, Zhao H, Wang Y, et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat Immunol. 2022;23:123–31.

Article  Google Scholar 

Pratap UP, Vadlamudi RK. PERK promotes immunosuppressive M2 macrophage phenotype by metabolic reprogramming and epigenetic modifications through the PERK-ATF4-PSAT1 axis. Immunometabolism. 2022;4:2346–56.

Article  Google Scholar 

Willenborg S, Sanin DE, Jais A, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metab. 2021;33:2398–414.

Article  CAS  PubMed  Google Scholar 

Chen S, Xia Y, He F, et al. Serine supports IL-1beta production in macrophages through mTOR signaling. Front Immunol. 2020;11:1866–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shan X, Hu P, Ni L, et al. Serine metabolism orchestrates macrophage polarization by regulating the IGF1-p38 axis. Cell Mol Immunol. 2022;19:1263–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mafi S, Mansoori B, Taeb S, Sadeghi H, Abbasi R, Cho WC, et al. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front Immunol. 2021;12:774103. https://doi.org/10.3389/fimmu.2021.774103.

Article  CAS  PubMed  Google Scholar 

Linke M, Pham HT, Katholnig K, Schnoller T, Miller A, Demel F, et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol. 2017;18(3):293–302. https://doi.org/10.1038/ni.3655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity. 2016;45(4):817–30. https://doi.org/10.1016/j.immuni.2016.09.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rathore R, Caldwell KE, Schutt C, Brashears CB, Prudner BC, Ehrhardt WR, et al. Metabolic compensation activates pro-survival mTORC1 signaling upon 3-phosphoglycerate dehydrogenase inhibition in osteosarcoma. Cell Rep. 2021;34(4):108678. https://doi.org/10.1016/j.celrep.2020.108678.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margaret E, Torrence MRM, Hosios AM, Alexander J. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. Elife. 2021;10:e63326. https://doi.org/10.7554/eLife.63326.

Article  Google Scholar 

Tait-Mulder J, Hodge K, Sumpton D, Zanivan S, Vazquez A. The conversion of formate into purines stimulates mTORC1 leading to CAD-dependent activation of pyrimidine synthesis. Cancer Metab. 2020;8:20. https://doi.org/10.1186/s40170-020-00228-3.

Article  PubMed  PubMed Central  Google Scholar 

Kelly B, O'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25(7):771–84. https://doi.org/10.1038/cr.2015.68.

留言 (0)

沒有登入
gif