Multifunctional gold nanoparticles for osteoporosis: synthesis, mechanism and therapeutic applications

Harvey N, Dennison E, Cooper C. Osteoporosis: impact on health and economics nature reviews. Rheumatology. 2010. https://doi.org/10.1038/nrrheum.2009.260.

Article  PubMed  Google Scholar 

Lin H, Wang X, Wang L, Dong H, Huang P, Cai Q, Mo Y, Huang F, Jiang Z. Identified the synergistic mechanism of for treating fracture based on network pharmacology. Evidence-based Complement Altern Med ECAM. 2019;2019:7342635. https://doi.org/10.1155/2019/7342635.

Article  Google Scholar 

Li C, Zhang Y, Chen G, Hu F, Zhao K, Wang Q. Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater. 2017. https://doi.org/10.1002/adma.201605754.

Article  PubMed  PubMed Central  Google Scholar 

Carbone EJ, Rajpura K, Allen BN, Cheng E, Ulery BD, Lo KWH. Osteotropic nanoscale drug delivery systems based on small molecule bone-targeting moieties. Nanomed Nanotechnol Biol Med. 2017;13(1):37–47. https://doi.org/10.1016/j.nano.2016.08.015.

Article  CAS  Google Scholar 

Shi C, Wu T, He Y, Zhang Y, Fu D. Recent advances in bone-targeted therapy. Pharmacol Ther. 2020;207:107473. https://doi.org/10.1016/j.pharmthera.2020.107473.

Article  CAS  PubMed  Google Scholar 

Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials. 2011;1(1):31–63. https://doi.org/10.3390/nano1010031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klębowski B, Depciuch J, Parlińska-Wojtan M, Baran J. Applications of noble metal-based nanoparticles in medicine. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19124031.

Article  PubMed  PubMed Central  Google Scholar 

Xu J, Peng C, Yu M, Zheng J. Renal clearable noble metal nanoparticles: photoluminescence, elimination, and biomedical applications Wiley interdisciplinary reviews. Nanomedicine Nanobiotechnol. 2017. https://doi.org/10.1002/wnan.1453.

Article  Google Scholar 

Nasibova A. Generation of nanoparticles in biological systems and their application prospects. Adv Biol Earth Sci. 2023;8(2):140.

Google Scholar 

Ahmadov IS, Bandaliyeva AA, Nasibova AN, Hasanova FV, Khalilov RI. The synthesis of the silver nanodrugs in the medicinal plant Baikal skullcap (Scutellaria baicalensis georgi) and their antioxidant, antibacterial activity. Adv Biol Earth Sci. 2020;5(2).

Yeh Y-C, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871–80. https://doi.org/10.1039/c1nr11188d.

Article  CAS  PubMed  Google Scholar 

Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int Mol Sci. 2018. https://doi.org/10.3390/ijms19071979.

Article  Google Scholar 

Darweesh RS, Ayoub NM, Nazzal S. Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int J Nanomed. 2019;14:7643–63. https://doi.org/10.2147/IJN.S223941.

Article  CAS  Google Scholar 

Qiao M, Tang W, Xu Z, Wu X, Huang W, Zhu Z, Wan Q. Gold nanoparticles: promising biomaterials for osteogenic/adipogenic regulation in bone repair. J Mater Chem B. 2023;11(11):2307–33. https://doi.org/10.1039/d2tb02563a.

Article  CAS  PubMed  Google Scholar 

Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–56. https://doi.org/10.1016/j.talanta.2018.02.088.

Article  CAS  PubMed  Google Scholar 

Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed. 2020;15:9823–57. https://doi.org/10.2147/IJN.S279094.

Article  CAS  Google Scholar 

Goulet PJG, Lennox RB. New insights into Brust-Schiffrin metal nanoparticle synthesis. J Am Chem Soc. 2010;132(28):9582–4. https://doi.org/10.1021/ja104011b.

Article  CAS  PubMed  Google Scholar 

Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79. https://doi.org/10.1039/c1cs15237h.

Article  CAS  PubMed  Google Scholar 

Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49(18):N309–15.

Article  CAS  PubMed  Google Scholar 

Roa W, Zhang X, Guo L, Shaw A, Hu X, Xiong Y, Gulavita S, Patel S, Sun X, Chen J, Moore R, Xing JZ. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology. 2009;20(37):375101. https://doi.org/10.1088/0957-4484/20/37/375101.

Article  CAS  PubMed  Google Scholar 

Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, Zhang G, Shi X. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials. 2015;38:10–21. https://doi.org/10.1016/j.biomaterials.2014.10.065.

Article  CAS  PubMed  Google Scholar 

Wang S, Huang P, Nie L, Xing R, Liu D, Wang Z, Lin J, Chen S, Niu G, Lu G, Chen X. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater. 2013;25(22):3055–61. https://doi.org/10.1002/adma.201204623.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong L, Alves CS, Hou W, Qiu J, Möhwald H, Tomás H, Shi X. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl Mater Interfaces. 2015;7(8):4833–43. https://doi.org/10.1021/am508760w.

Article  CAS  PubMed  Google Scholar 

Ricles LM, Nam SY, Treviño EA, Emelianov SY, Suggs LJ. A dual gold nanoparticle system for mesenchymal stem cell tracking. J Mater Chem B. 2014;2(46):8220–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akter R, Ling L, Rupa EJ, KyuPark J, Mathiyalagan R, Nahar J, Won LJ, Hyun KD, Murugesan M, Yang DC, Kang SC, Kwak G-Y. Binary effects of gynostemma gold nanoparticles on obesity and inflammation via downregulation of PPARγ/CEPBα and TNF-α gene expression. Molecules. 2022. https://doi.org/10.3390/molecules27092795.

Article  PubMed  PubMed Central  Google Scholar 

Jadhav K, Rajeshwari HR, Deshpande S, Jagwani S, Dhamecha D, Jalalpure S, Subburayan K, Baheti D. Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry. Mater Sci Eng C. 2018;93:664–70. https://doi.org/10.1016/j.msec.2018.08.028.

Article  CAS  Google Scholar 

Chen Y, Yang C, Dai Q, Tan J, Dou C, Luo F. Gold-nanosphere mitigates osteoporosis through regulating TMAO metabolism in a gut microbiota-dependent manner. J Nanobiotechnol. 2023;21(1):125. https://doi.org/10.1186/s12951-023-01872-9.

Article  CAS  Google Scholar 

Zhang S, Zhou H, Kong N, Wang Z, Fu H, Zhang Y, Xiao Y, Yang W, Yan F. l-cysteine-modified chiral gold nanoparticles promote periodontal tissue regeneration. Bioact Mater. 2021;6(10):3288–99. https://doi.org/10.1016/j.bioactmat.2021.02.035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Chen Y, Yang Y, Kawazoe N, Chen G. Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesenchymal stem cells. J Mater Chem B. 2017;5(7):1353–62. https://doi.org/10.1039/c6tb03276a.

Article  CAS  PubMed  Google Scholar 

Favi PM, Gao M, Sepúlveda Arango LJ, Ospina SP, Morales M, Pavon JJ, Webster TJ. Shape and surface effects on the cytotoxicity of nanoparticles: gold nanospheres versus gold nanostars. J Biomed Mater Res Part A. 2015;103(11):3449–62. https://doi.org/10.1002/jbm.a.35491.

Article  CAS  Google Scholar 

Bai X, Gao Y, Zhang M, Chang Y-N, Chen K, Li J, Zhang J, Liang Y, Kong J, Wang Y, Liang W, Xing G, Li W, Xing G. Carboxylated gold nanoparticles inhibit bone erosion by disturbing the acidification of an osteoclast absorption microenvironment. Nanoscale. 2020;12(6):3871–8. https://doi.org/10.1039/c9nr09698a.

Article  CAS  PubMed  Google Scholar 

Li J, Li JEJ, Zhang J, Wang X, Kawazoe N, Chen G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8(15):7992–8007. https://doi.org/10.1039/c5nr08808a.

Article  CAS  PubMed  Google Scholar 

Pan T, Song W, Gao H, Li T, Cao X, Zhong S, Wang Y. miR-29b-Loaded gold nanoparticles targeting to the endoplasmic reticulum for synergistic promotion of osteogenic differentiation. ACS Appl Mater Interfaces. 2016;8(30):19217–27. https://doi.org/10.1021/acsami.6b02969.

Article  CAS  PubMed  Google Scholar 

Gupta A, Singh S. Multimodal potentials of gold nanoparticles for bone tissue engineering and regenerative medicine: avenues and prospects. Small. 2022;18(29):e2201462. https://doi.org/10.1002/smll.202201462.

Article  CAS  PubMed  Google Scholar 

Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials. 2009;30(10):1928–36. https://doi.org/10.1016/j.biomaterials.2008.12.038.

Article  CAS 

留言 (0)

沒有登入
gif