The epitranscriptome of high-grade gliomas: a promising therapeutic target with implications from the tumor microenvironment to endogenous retroviruses

Wirsching, H.-G., E. Galanis, and M. Weller. 2016 Chapter 23 – Glioblastoma. In Handbook of Clinical Neurology, M.S. Berger and M. Weller, Editors., Elsevier.

Fedele M, et al. Proneural-mesenchymal transition: phenotypic plasticity to acquire multitherapy resistance in glioblastoma. Int J Mol Sci. 2019;20(11):2746.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yekula A, et al. Extracellular vesicles in glioblastoma tumor microenvironment. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2019.03137.

Article  PubMed  PubMed Central  Google Scholar 

Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20(6):303–22.

Article  PubMed  CAS  Google Scholar 

Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42.

Article  PubMed  CAS  Google Scholar 

Shelton SB, Reinsborough C, Xhemalce B. Who watches the watchmen: roles of RNA modifications in the RNA interference pathway. PLoS Genet. 2016;12(7):e1006139.

Article  PubMed  PubMed Central  Google Scholar 

Esteller M, Pandolfi PP. The epitranscriptome of noncoding RNAs in cancer. Cancer Discov. 2017;7(4):359–68.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun H, et al. Regulation and functions of non-m(6)A mRNA modifications. Nat Rev Mol Cell Biol. 2023. https://doi.org/10.1038/s41580-023-00622-x.

Article  PubMed  Google Scholar 

Piperi C, et al. Deciphering glioma epitranscriptome: focus on RNA modifications. Oncogene. 2023;42(28):2197–206.

Article  PubMed  CAS  Google Scholar 

Tang Q, et al. RNA modifications in cancer. Br J Cancer. 2023;129(2):204–21.

Article  PubMed  CAS  Google Scholar 

Shah AH, et al. The role of human endogenous retroviruses in gliomas: from etiological perspectives and therapeutic implications. Neuro Oncol. 2021;23(10):1647–55.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jansz N, Faulkner GJ. Endogenous retroviruses in the origins and treatment of cancer. Genome Biol. 2021;22(1):147.

Article  PubMed  PubMed Central  Google Scholar 

Wang R, et al. CircNT5E Acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. Can Res. 2018;78(17):4812–25.

Article  CAS  Google Scholar 

Shi H, et al. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol Cancer. 2020;19(1):78.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tűzesi Á, et al. Understanding the epitranscriptome for avant-garde brain tumour diagnostics. Cancers (Basel). 2023. https://doi.org/10.3390/cancers15041232.

Article  PubMed  Google Scholar 

Finkel D, Groner Y. Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs. Virology. 1983;131(2):409–25.

Article  PubMed  CAS  Google Scholar 

Bartosovic M, et al. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3’-end processing. Nucleic Acids Res. 2017;45(19):11356–70.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu N, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518(7540):560–4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fustin JM, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155(4):793–806.

Article  PubMed  CAS  Google Scholar 

Wang X, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388–99.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zheng G, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.

Article  PubMed  CAS  Google Scholar 

Li X, et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol. 2016;12(5):311–6.

Article  PubMed  CAS  Google Scholar 

Squires JE, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 2012;40(11):5023–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang X, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27(5):606–25.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang HY, et al. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals. Chem Commun (Camb). 2016;52(4):737–40.

Article  PubMed  CAS  Google Scholar 

Horowitz S, et al. Mapping of N6-methyladenosine residues in bovine prolactin mRNA. Proc Natl Acad Sci U S A. 1984;81(18):5667–71.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kumar S, Mohapatra T. Deciphering epitranscriptome: modification of mrna bases provides a new perspective for post-transcriptional regulation of gene expression. Front Cell Dev Biol. 2021;9:628415.

Article  PubMed  PubMed Central  Google Scholar 

Keszthelyi TM, Tory K. The importance of pseudouridylation: human disorders related to the fifth nucleoside. Biologia Futura. 2023;74(1):3–15.

Article  PubMed  Google Scholar 

Galeano F, et al. ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene. 2013;32(8):998–1009.

Article  PubMed  CAS  Google Scholar 

Nigita G, Veneziano D, Ferro A. A-to-I RNA editing: current knowledge sources and computational approaches with special emphasis on non-coding rna molecules. Front Bioeng Biotechnol. 2015;3:37.

Article  PubMed  PubMed Central  Google Scholar 

Mannion N, et al. New insights into the biological role of mammalian ADARs; the RNA editing proteins. Biomolecules. 2015;5(4):2338–62.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang Y, Zheng Y, Beal PA. Adenosine Deaminases That Act on RNA (ADARs). Enzymes. 2017;41:215–68. https://doi.org/10.1016/bs.enz.2017.03.006.

Article  PubMed  CAS  Google Scholar 

Samuel CE. ADARs: viruses and innate immunity. Curr Top Microbiol Immunol. 2012;353(1):163–95.

PubMed  CAS  Google Scholar 

Melcher T, et al. RED2, a Brain-specific member of the RNA-specific adenosine Deaminase family*. J Biol Chem. 1996;271(50):31795–8.

Article  PubMed  CAS  Google Scholar 

Chen CX, et al. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA. 2000;6(5):755–67.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cho D-SC, et al. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA*. J Biol Chem. 2003;278(19):17093–102.

Article  PubMed  CAS  Google Scholar 

Licht K, et al. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res. 2019;29(9):1453–63.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chalk AM, et al. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol. 2019. https://doi.org/10.1186/s13059-019-1873-2.

Article 

留言 (0)

沒有登入
gif