The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies

Fregni G, Messaoudene M, Fourmentraux-Neves E, Mazouz-Dorval S, Chanal J, Maubec E et al. Phenotypic and functional characteristics of blood natural killer cells from melanoma patients at different clinical stages. PloS one. 2013;8:e76928. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24204708.

Gener Lahav T, Adler O, Zait Y, Shani O, Amer M, Doron H et al. Melanoma-derived extracellular vesicles instigate proinflammatory signaling in the metastatic microenvironment. International Journal of Cancer. 2019;145:2521–34. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/ijc.32521.

Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Seminars in Cancer Biology. 2019;59:236–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1044579X19301087.

Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science. 2011;331:1565–70. Available from: https://www.science.org/doi/https://doi.org/10.1126/science.1203486.

Dana N, Vaseghi G, Haghjooy Javanmard S. Activation of PPARγ Inhibits TLR4 Signal Transduction Pathway in Melanoma Cancer In Vitro. Advanced Pharmaceutical Bulletin. 2020;10:458–63. Available from: https://apb.tbzmed.ac.ir/Article/apb-27680.

Baginska J, Viry E, Paggetti J, Medves S, Berchem G, Moussay E et al. The Critical Role of the Tumor Microenvironment in Shaping Natural Killer Cell-Mediated Anti-Tumor Immunity. Frontiers in Immunology. 2013;4. Available from: http://journal.frontiersin.org/article/https://doi.org/10.3389/fimmu.2013.00490/abstract.

Mignogna C, Scali E, Camastra C, Presta I, Zeppa P, Barni T et al. Innate immunity in cutaneous melanoma. Clinical and experimental dermatology. 2017;42:243–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28052512.

Funck F, Pahl J, Kyjacova L, Freund L, Oehrl S, Gräbe G et al. Human innate immune cell crosstalk induces melanoma cell senescence. Oncoimmunology. 2020;9:1808424. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32939325.

Garofalo C, De Marco C, Cristiani CM. NK Cells in the Tumor Microenvironment as New Potential Players Mediating Chemotherapy Effects in Metastatic Melanoma. Frontiers in oncology. 2021;11:754541. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34712615.

Tarazona R, Duran E, Solana R. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy. Frontiers in Immunology. 2016;6. Available from: http://journal.frontiersin.org/Article/https://doi.org/10.3389/fimmu.2015.00649/abstract.

Balsamo M, Vermi W, Parodi M, Pietra G, Manzini C, Queirolo P et al. Melanoma cells become resistant to NK-cell-mediated killing when exposed to NK-cell numbers compatible with NK-cell infiltration in the tumor. European Journal of Immunology. 2012;42:1833–42. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/eji.201142179.

Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. Journal of Clinical Investigation. 2009;119:1251–63. Available from: http://www.jci.org/articles/view/36022.

Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I et al. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunology, Immunotherapy. 2009;58:1517–26. Available from: http://link.springer.com/https://doi.org/10.1007/s00262-009-0682-y.

Becker JC, Houben R, Schrama D, Voigt H, Ugurel S, Reisfeld RA. Mouse models for melanoma: a personal perspective. Experimental Dermatology. 2010;19:157–64. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1600-0625.2009.00986.x.

Mirjačić Martinović KM, Babović NL, Džodić RR, Jurišić VB, Tanić NT, Konjević GM. Decreased expression of NKG2D, NKp46, DNAM-1 receptors, and intracellular perforin and STAT-1 effector molecules in NK cells and their dim and bright subsets in metastatic melanoma patients. Melanoma Research. 2014;24:295–304. Available from: https://journals.lww.com/00008390-201408000-00002.

da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK et al. Reversal of NK-Cell Exhaustion in Advanced Melanoma by Tim-3 Blockade. Cancer Immunology Research. 2014;2:410–22. Available from: https://aacrjournals.org/cancerimmunolres/article/2/5/410/467639/Reversal-of-NK-Cell-Exhaustion-in-Advanced.

Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling. 2020;18:59. Available from: https://biosignaling.biomedcentral.com/articles/https://doi.org/10.1186/s12964-020-0530-4.

Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. Journal of Cellular Physiology. 2018;233:2982–92. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/jcp.26051.

Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: prospects and challenges. International Journal of Hematology. 2017;105:244–56. Available from: http://link.springer.com/https://doi.org/10.1007/s12185-016-2171-3.

Bożyk A, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Tumor Microenvironment—A Short Review of Cellular and Interaction Diversity. Biology. 2022;11:929. Available from: https://www.mdpi.com/2079-7737/11/6/929.

Parks SK, Cormerais Y, Pouysségur J. Hypoxia and cellular metabolism in tumour pathophysiology. The Journal of Physiology. 2017;595:2439–50. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1113/JP273309.

Villanueva J, Herlyn M. Melanoma and the tumor microenvironment. Current Oncology Reports. 2008;10:439–46. Available from: http://link.springer.com/10.1007/s11912-008-0067-y.

Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Frontiers in Oncology. 2022;12. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fonc.2022.842496/full.

Ruiter D, Bogenrieder T, Elder D, Herlyn M. Melanoma-stroma interactions: structural and functional aspects. The Lancet Oncology. 2002;3:35–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11905603.

Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Ziętek M, Matkowski R, Nowak D. Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. International Journal of Molecular Sciences. 2021;22:529. Available from: https://www.mdpi.com/1422-0067/22/2/529.

Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes & Development. 2016;30:1002–19. Available from: http://genesdev.cshlp.org/lookup/doi/https://doi.org/10.1101/gad.279737.116.

Busse A, Keilholz U. Role of TGF-β in Melanoma. Current Pharmaceutical Biotechnology. 2011;12:2165–75. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2010&volume=12&issue=12&spage=2165.

Li Z, Zhang J, Zhou J, Lu L, Wang H, Zhang G et al. Nodal Facilitates Differentiation of Fibroblasts to Cancer-Associated Fibroblasts that Support Tumor Growth in Melanoma and Colorectal Cancer. Cells. 2019;8:538. Available from: https://www.mdpi.com/2073-4409/8/6/538.

Munster-Kuhnel AK. Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology. 2004;14:43R-51R. Available from: https://academic.oup.com/glycob/article-lookup/doi/https://doi.org/10.1093/glycob/cwh113.

Orimo A, Weinberg RA. Stromal Fibroblasts in Cancer: A Novel Tumor-Promoting Cell Type. Cell Cycle. 2006;5:1597–601. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.4161/cc.5.15.3112.

Papaccio F, Kovacs D, Bellei B, Caputo S, Migliano E, Cota C et al. Profiling Cancer-Associated Fibroblasts in Melanoma. International Journal of Molecular Sciences. 2021;22:7255. Available from: https://www.mdpi.com/1422-0067/22/14/7255.

Zhou L, Yang K, Andl T, Wickett RR, Zhang Y. Perspective of Targeting Cancer-Associated Fibroblasts in Melanoma. Journal of Cancer. 2015;6:717–26. Available from: http://www.jcancer.org/v06p0717.htm.

Maria AG, Dillenburg-Pilla P, Reis RI, Floriano EM, Tefé-Silva C, Ramos SG et al. Host kinin B1 receptor plays a protective role against melanoma progression. Scientific Reports. 2016;6:22078. Available from: https://www.nature.com/articles/srep22078.

Simiczyjew A, Dratkiewicz E, Mazurkiewicz J, Ziętek M, Matkowski R, Nowak D. The Influence of Tumor Microenvironment on Immune Escape of Melanoma. International Journal of Molecular Sciences. 2020;21:8359. Available from: https://www.mdpi.com/1422-0067/21/21/8359.

Passarelli A, Mannavola F, Stucci LS, Tucci M, Silvestris F. Immune system and melanoma biology: a balance between immunosurveillance and immune escape. Oncotarget. 2017;8:106132–42. Available from: https://www.oncotarget.com/lookup/doi/https://doi.org/10.18632/oncotarget.22190.

Ladányi A, Kiss J, Somlai B, Gilde K, Fejős Z, Mohos A et al. Density of DC-LAMP + mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunology, Immunotherapy. 2007;56:1459–69. Available from: https://link.springer.com/https://doi.org/10.1007/s00262-007-0286-3.

Tucci M, Passarelli A, Mannavola F, Felici C, Stucci LS, Cives M et al. Immune System Evasion as Hallmark of Melanoma Progression: The Role of Dendritic Cells. Frontiers in Oncology. 2019;9. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fonc.2019.01148/full.

Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE, Wolf DM et al. Critical Role for CD103+/CD141 + Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell. 2016;30:324–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S153561081630263X.

Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS. Toll-like Receptor 2 Activation Promotes Tumor Dendritic Cell Dysfunction by Regulating IL-6 and IL-10 Receptor Signaling. Cell Reports. 2015;13:2851–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211124715013844.

Dana N, Vaseghi G, Haghjooy Javanmard S. PPAR γ agonist, pioglitazone, suppresses melanoma cancer in mice by inhibiting TLR4 signaling. Journal of pharmacy & pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2019;22:418–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31509504.

Dana N, Haghjooy Javanmard S, Vaseghi G. The effect of fenofibrate, a PPARα activator on toll-like receptor-4 signal transduction in melanoma both in vitro and in vivo. Clinical and Translational Oncology. 2020;22:486–94. Available from: http://link.springer.com/https://doi.org/10.1007/s12094-019-02150-7.

Dana N, Javanmard SH, Vaseghi G. Effect of lipopolysaccharide on toll-like receptor-4 signals in mouse cancer cells. Bratislava Medical Journal. 2018;118:598–601. Available from: http://www.elis.sk/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=5463&category_id=135&option=com_virtuemart.

Masucci MT, Minopoli M, Carriero MV. Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Frontiers in Oncology. 2019;9. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fonc.2019.01146/full.

Sionov RV, Fridlender ZG, Granot Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenvironment. 2015;8:125–58. Available from: http://link.springer.com/https://doi.org/10.1007/s12307-014-0147-5.

Bahri R, Kiss O, Prise I, Garcia-Rodriguez KM, Atmoko H, Martínez-Gómez JM et al. Human Melanoma-Associated Mast Cells Display a Distinct Transcriptional Signature Characterized by an Upregulation of the Complement Component 3 That Correlates With Poor Prognosis. Frontiers in Immunology. 2022;13. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2022.861545/full.

Vukman KV, Försönits A, Oszvald Á, Tóth EÁ, Buzás EI. Mast cell secretome: Soluble and vesicular components. Seminars in Cell & Developmental Biology. 2017;67:65–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1084952117301076.

Atiakshin D, Kostin A, Buchwalow I, Samoilova V, Tiemann M. Protease Profile of Tumor-Associated Mast Cells in Melanoma. International Journal of Molecular Sciences. 2022;23:8930. Available from: https://www.mdpi.com/1422-0067/23/16/8930.

Amalinei C, Grigoraș A, Lozneanu L, Căruntu I-D, Giușcă S-E, Balan RA. The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina. 2022;58:365. Available from: https://www.mdpi.com/1648-9144/58/3/365.

Motti ML, Minopoli M, Di Carluccio G, Ascierto PA, Carriero MV. MicroRNAs as Key Players in Melanoma Cell Resistance to MAPK and Immune Checkpoint Inhibitors. International Journal of Molecular Sciences. 2020;21:4544. Available from: https://www.mdpi.com/1422-0067/21/12/4544.

Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology., Allergy. Asthma & Clinical Immunology. 2018;14:49. Available from: https://aacijournal.biomedcentral.com/articles/https://doi.org/10.1186/s13223-018-0278-1.

Willsmore ZN, Harris RJ, Crescioli S, Hussein K, Kakkassery H, Thapa D et al. B Cells in Patients With Melanoma: Implications for Treatment With Checkpoint Inhibitor Antibodies. Frontiers in Immunology. 2021;11. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2020.622442/full.

Somasundaram R, Zhang G, Fukunaga-Kalabis M, Perego M, Krepler C, Xu X et al. Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nature Communications. 2017;8:607. Available from: https://www.nature.com/articles/s41467-017-00452-4.

Ladányi A, Kiss J, Mohos A, Somlai B, Liszkay G, Gilde K et al. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunology, Immunotherapy. 2011;60:1729–38. Available from: http://link.springer.com/https://doi.org/10.1007/s00262-011-1071-x.

Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nature Communications. 2019;10:4186. Available from: https://www.nature.com/articles/s41467-019-12160-2.

Singer A, Bosselut R. CD4/CD8 Coreceptors in Thymocyte Development, Selection, and Lineage Commitment: Analysis of the CD4/CD8 Lineage Decision. Adv Immunol. 2004. p. 91–131. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065277604830037.

Falcone I, Conciatori F, Bazzichetto C, Ferretti G, Cognetti F, Ciuffreda L et al. Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers. 2020;12:2870. Available from: https://www.mdpi.com/2072-6694/12/10/2870.

Luckheeram RV, Zhou R, Verma AD, Xia B. CD4 + T Cells: Differentiation and Functions. Clinical and Developmental Immunology. 2012;2012:1–12. Available from: http://www.hindawi.com/journals/jir/2012/925135/.

Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen–specific CD8 + T cell dysfunction in melanoma patients. Journal of Experimental Medicine. 2010;207:2175–86. Available from: https://rupress.org/jem/article/207/10/2175/40768/Upregulation-of-Tim3-and-PD1-expression-is.

Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ et al. Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma. Cell. 2019;176:775–789.e18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S009286741831568X.

Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC et al. Activating Receptors and Coreceptors Involved in Human Natural Killer Cell-Mediated Cytolysis. Annual Review of Immunology. 2001;19:197–223. Available from: https://www.annualreviews.org/doi/https://doi.org/10.1146/annurev.immunol.19.1.197.

Pietra G, Vitale M, Moretta L, Mingari MC. How melanoma cells inactivate NK cells. OncoImmunology. 2012;1:974–5. Available from: http://www.tandfonline.com/doi/abs/10.4161/onci.20405.

Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers. 2021;13:1363. Available from: https://www.mdpi.com/2072-6694/13/6/1363.

Taggart D, Andreou T, Scott KJ, Williams J, Rippaus N, Brownlie RJ et al. Anti–PD-1/anti–CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8 + T cell trafficking. Proceedings of the National Academy of Sciences. 2018;115. https://doi.org/10.1073/pnas.1714089115.

Lee H, Quek C, Silva I, Tasker A, Batten M, Rizos H et al. Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients. OncoImmunology. 2019;8:e1537581. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.1080/2162402X.2018.1537581.

Hersey P, Edwards A, McCarthy WH. Tumour-related changes in natural killer cell activity in melanoma patients. Influence of stage of disease, tumour thickness and age of patients. International Journal of Cancer. 1980;25:187–94. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/ijc.2910250204.

Hersey P, Edwards A, Honeyman M, McCarthy WH. Low natural-killer-cell activity in familial melanoma patients and their relatives. British Journal of Cancer. 1979;40:113–22. Available from: http://www.nature.com/articles/bjc1979147.

Morgado S, Sanchez-Correa B, Casado JG, Duran E, Gayoso I, Labella F et al. NK Cell Recognition and Killing of Melanoma Cells Is Controlled by Multiple Activating Receptor-Ligand Interactions. Journal of Innate Immunity. 2011;3:365–73. Available from: https://www.karger.com/Article/FullText/328505.

Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology. 2011;132:315–25. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1365-2567.2010.03398.x.

Hsu KC, Liu X-R, Selvakumar A, Mickelson E, O’Reilly RJ, Dupont B. Killer Ig-Like Receptor Haplotype Analysis by Gene Content: Evidence for Genomic Diversity with a Minimum of Six Basic Framework Haplotypes, Each with Multiple Subsets. The Journal of Immunology. 2002;169:5118–29. Available from: https://journals.aai.org/jimmunol/article/169/9/5118/75110/Killer-Ig-Like-Receptor-Haplotype-Analysis-by-Gene.

Middleton D, Gonzelez F. The extensive polymorphism of KIR genes. Immunology. 2010;129:8–19. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1365-2567.2009.03208.x.

Fuchs A, Cella M, Kondo T, Colonna M. Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44. Blood. 2005;106:2076–82. Available from: https://ashpublications.org/blood/article/106/6/2076/21595/Paradoxic-inhibition-of-human-natural.

Vitale M, Falco M, Castriconi R, Parolini S, Zambello R, Semenzato G et al. Identification of NKp80, a novel triggering molecule expressed by human NK cells. European Journal of Immunology. 2001;31:233–42. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/1521-4141(200101)31:1%3C233::AID-IMMU233%3E3.0.CO;2-4.

Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A et al. Melanoma Cells Inhibit Natural Killer Cell Function by Modulating the Expression of Activating Receptors and Cytolytic Activity. Cancer Research. 2012;72:1407–15. Available from: https://aacrjournals.org/cancerres/article/72/6/1407/577434/Melanoma-Cells-Inhibit-Natural-Killer-Cell.

Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R et al. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. European Journal of Immunology. 1999;29:1656–66. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/(SICI)1521-4141(199905)29:05%3C1656::AID-IMMU1656%3E3.0.CO;2-1.

Markel G, Seidman R, Besser MJ, Zabari N, Ortenberg R, Shapira R et al. Natural Killer Lysis Receptor (NKLR)/NKLR-Ligand Matching as a Novel Approach for Enhancing Anti-Tumor Activity of Allogeneic NK Cells. Zimmer J, editor. PLoS ONE. 2009;4:e5597. https://doi.org/10.1371/journal.pone.0005597.

Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. Science. 1999;285:727–9. Available from: https://www.science.org/doi/https://doi.org/10.1126/science.285.5428.727.

Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W et al. ULBPs, Novel MHC Class I–Related Molecules, Bind to CMV Glycoprotein UL16 and Stimulate NK Cytotoxicity through the NKG2D Receptor. Immunity. 2001;14:123–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1074761301000954.

Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nature Reviews Immunology. 2015;15:243–54. Available from: https://www.nature.com/articles/nri3799.

Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B et al. Identification of PVR (CD155) and Nectin-2 (CD112) as Cell Surface Ligands for the Human DNAM-1 (CD226) Activating Molecule. Journal of Experimental Medicine. 2003;198:557–67. Available from: https://rupress.org/jem/article/198/4/557/39948/Identification-of-PVR-CD155-and-Nectin2-CD112-as.

Braud VM, Allan DSJ, O’Callaghan CA, Söderström K, D’Andrea A, Ogg GS et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391:795–9. Available from: http://www.nature.com/articles/35869.

Derré L, Corvaisier M, Charreau B, Moreau A, Godefroy E, Moreau-Aubry A et al. Expression and Release of HLA-E by Melanoma Cells and Melanocytes: Potential Impact on the Response of Cytotoxic Effector Cells. The Journal of Immunology. 2006;177:3100–7. Available from: https://journals.aai.org/jimmunol/article/177/5/3100/37954/Expression-and-Release-of-HLA-E-by-Melanoma-Cells.

Byrd A, Hoffmann SC, Jarahian M, Momburg F, Watzl C. Expression Analysis of the Ligands for the Natural Killer Cell Receptors NKp30 and NKp44. Khoury J El, editor. PLoS ONE. 2007;2:e1339. https://doi.org/10.1371/journal.pone.0001339.

de Andrade LF, Lu Y, Luoma A, Ito Y, Pan D, Pyrdol JW et al. Discovery of specialized NK cell populations infiltrating human melanoma metastases. JCI Insight. 2019;4. Available from: https://insight.jci.org/articles/view/133103.

Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. The Journal of Experimental Medicine. 2008;205:2965–73. Available from: https://rupress.org/jem/article/205/13/2965/47147/DNAM-1-promotes-activation-of-cytotoxic.

van Montfoort N, Borst L, Korrer MJ, Sluijter M, Marijt KA, Santegoets SJ et al. NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines. Cell. 2018;175:1744–1755.e15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867418313813.

Fregni G, Perier A, Pittari G, Jacobelli S, Sastre X, Gervois N et al. Unique functional status of natural killer cells in metastatic stage IV melanoma patients and its modulation by chemotherapy. Clinical cancer research: an official journal of the American Association for Cancer Research. 2011;17:2628–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21224372.

Mattiola I. Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers. 2021;13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34203391.

Balsamo M, Scordamaglia F, Pietra G, Manzini C, Cantoni C, Boitano M, et al. Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci USA. 2009;106:20847–52. Available from:. http://www.ncbi.nlm.nih.gov/pubmed/19934056.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghiringhelli F, Ménard C, Terme M, Flament C, Taieb J, Chaput N et al. CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. The Journal of experimental m

留言 (0)

沒有登入
gif