Zhang J, Xia Y, Zhou X, Yu H, Tan Y, et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. https://doi.org/10.3389/fphar.2022.977660.
Article CAS PubMed PubMed Central Google Scholar
Lucaciu RL, Hangan AC, Sevastre B, Oprean LS. Metallo-drugs in cancer therapy: past. Present and Future Molecules. 2022;27:6485. https://doi.org/10.3390/molecules27196485.
Article CAS PubMed Google Scholar
Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53:148–58. https://doi.org/10.2478/raon-2019-0018.
Article CAS PubMed PubMed Central Google Scholar
Giaccone G. Clinical perspectives on platinum resistance. Drugs. 2000;59(Suppl 4):9–17. https://doi.org/10.2165/00003495-200059004-00002.
Article CAS PubMed Google Scholar
Uno K, Yoshikawa N, Tazaki A, Ohnuma S, Kitami K, et al. Significance of platinum distribution to predict platinum resistance in ovarian cancer after platinum treatment in neoadjuvant chemotherapy. Sci Rep. 2022;12:4513. https://doi.org/10.1038/s41598-022-08503-7.
Article CAS PubMed PubMed Central Google Scholar
D’Amora P, Silva IDCG, Tewari KS, Bristow RE, Cappuccini F, et al. Platinum resistance in gynecologic malignancies: response, disease free and overall survival are predicted by biochemical signature: a metabolomic analysis. Gynecol Oncol. 2021;163:162–70. https://doi.org/10.1016/j.ygyno.2021.08.001.
Article CAS PubMed Google Scholar
Bai X, Ni J, Beretov J, Graham P, Li Y. Triple-negative breast cancer therapeutic resistance: where is the Achilles’ heel? Cancer Lett. 2021;497:100–11. https://doi.org/10.1016/j.canlet.2020.10.016.
Article CAS PubMed Google Scholar
Ciarimboli G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Res. 2014;34:547–50.
Chen SH, Chang JY. new insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment. Int J Mol Sci. 2019;20:4136. https://doi.org/10.3390/ijms20174136.
Article CAS PubMed PubMed Central Google Scholar
Zhou J, Kang Y, Chen L, Wang H, Liu J, et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol. 2020;11:343. https://doi.org/10.3389/fphar.2020.00343.
Article CAS PubMed PubMed Central Google Scholar
Wang L, Zhao X, Fu J, Xu W, Yuan J. The role of tumour metabolism in cisplatin resistance. Front Mol Biosci. 2021;8:691795. https://doi.org/10.3389/fmolb.2021.691795.
Article CAS PubMed PubMed Central Google Scholar
Poisson LM, Munkarah A, Madi H, Datta I, Hensley-Alford S, et al. A metabolomic approach to identifying platinum resistance in ovarian cancer. J Ovarian Res. 2015;8:13. https://doi.org/10.1186/s13048-015-0140-8.
Article CAS PubMed PubMed Central Google Scholar
Ghini V, Magherini F, Massai L, Messori L, Turano P. Comparative NMR metabolomics of the responses of A2780 human ovarian cancer cells to clinically established Pt-based drugs. Dalton Trans. 2022;51:12512–23. https://doi.org/10.1039/d2dt02068h.
Article CAS PubMed Google Scholar
Criscuolo D, Avolio R, Parri M, Romano S, Chiarugi P, et al. Decreased levels of GSH are associated with platinum resistance in high-grade serous ovarian cancer. Antioxidants. 2022;11:1544. https://doi.org/10.3390/antiox11081544.
Article CAS PubMed PubMed Central Google Scholar
Acland M, Lokman NA, Young C, Anderson D, Condina M, et al. Chemoresistant cancer cell lines are characterized by migratory, amino acid metabolism, protein catabolism and IFN1 signalling perturbations. Cancers. 2022;14:2763. https://doi.org/10.3390/cancers14112763.
Article CAS PubMed PubMed Central Google Scholar
Galvez L, Rusz M, Schwaiger-Haber M, El Abiead Y, Hermann G, et al. Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics. 2019;11:1716–28. https://doi.org/10.1039/c9mt00141g.
Article CAS PubMed Google Scholar
Herrmann HA, Rusz M, Baier D, Jakupec MA, Keppler BK, et al. Thermodynamic genome-scale metabolic modeling of metallodrug resistance in colorectal cancer. Cancers. 2021;13:4130. https://doi.org/10.3390/cancers13164130.
Article CAS PubMed PubMed Central Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;7:209–49. https://doi.org/10.3322/caac.21660.
Demas DM, Demo S, Fallah Y, Clarke R, Nephew KP, et al. Glutamine metabolism drives growth in advanced hormone receptor positive breast cancer. Front Oncol. 2019;9:686. https://doi.org/10.3389/fonc.2019.00686.
Article PubMed PubMed Central Google Scholar
Tomková V, Sandoval-Acuña C, Torrealba N, Truksa J. Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells. Free Radic Biol Med. 2019;143:510–21. https://doi.org/10.1016/j.freeradbiomed.2019.09.004.
Article CAS PubMed Google Scholar
Barkovskaya A, Seip K, Prasmickaite L, Mills IG, Moestue SA, Itkonen HM. Inhibition of O-GlcNAc transferase activates tumor-suppressor gene expression in tamoxifen-resistant breast cancer cells. Sci Rep. 2020;10:16992. https://doi.org/10.1038/s41598-020-74083-z.
Article CAS PubMed PubMed Central Google Scholar
Pal P, Millner A, Semina SE, Huggins RJ, Running L, et al. Endocrine therapy-resistant breast cancer cells are more sensitive to ceramide kinase inhibition and elevated ceramide levels than therapy-sensitive breast cancer cells. Cancers. 2022;14:2380. https://doi.org/10.3390/cancers14102380.
Article CAS PubMed PubMed Central Google Scholar
Tan Z, Ge C, Feng D, Xu C, Cao B, et al. The Interleukin-6/Signal transducer and activator of transcription-3/Cystathionine γ-lyase axis deciphers the transformation between the sensitive and resistant phenotypes of breast cancer cells. Drug Metab Dispos. 2021;49:985–94. https://doi.org/10.1124/dmd.121.000571.
Article CAS PubMed Google Scholar
Barata IS, Gomes BC, Rodrigues AS, Rueff J, Kranendonk M, et al. The complex dynamic of phase i drug metabolism in the early stages of doxorubicin resistance in breast cancer cells. Genes. 2022;13:1977. https://doi.org/10.3390/genes13111977.
Article CAS PubMed PubMed Central Google Scholar
Saha T, Lukong KE. Breast cancer stem-like cells in drug resistance: a review of mechanisms and novel therapeutic strategies to overcome drug resistance. Front Oncol. 2022;12:856974. https://doi.org/10.3389/fonc.2022.856974.
Article CAS PubMed PubMed Central Google Scholar
Maria RM, Altei WF, Selistre-de-Araujo HS, Colnago LA. Impact of chemotherapy on metabolic reprogramming: characterization of the metabolic profile of breast cancer MDA-MB-231 cells using 1H HR-MAS NMR spectroscopy. J Pharm Biomed Anal. 2017;146:324–8. https://doi.org/10.1016/j.jpba.2017.08.038.
Article CAS PubMed Google Scholar
Resendiz-Acevedo K, García-Aguilera ME, Esturau-Escofet N, Ruiz-Azuara L. 1H -NMR metabolomics study of the effect of cisplatin and Casiopeina iigly on MDA-MB-231 breast tumor cells. Front Mol Biosci. 2021;8:742859. https://doi.org/10.3389/fmolb.2021.742859.
Article CAS PubMed PubMed Central Google Scholar
Geck RC, Foley JR, Murray Stewart T, Asara JM, Casero RA Jr, et al. Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy. J Biol Chem. 2020;295:6263–77. https://doi.org/10.1074/jbc.RA119.012376.
Article CAS PubMed PubMed Central Google Scholar
Granit A, Mishra K, Barasch D, Peretz-Yablonsky T, Eyal S, et al. Metabolomic profiling of triple negative breast cancer cells suggests that valproic acid can enhance the anticancer effect of cisplatin. Front Cell Dev Biol. 2022;10:1014798. https://doi.org/10.3389/fcell.2022.1014798.
Article PubMed PubMed Central Google Scholar
Vojtek M, Martins CB, Ramos R, Duarte SG, Ferreira IMPLVO, et al. Pd(II) and Pt(II) trinuclear chelates with spermidine: selective anticancer activity towards TNBC-sensitive and -resistant to cisplatin. Pharmaceutics. 2023;15:1205. https://doi.org/10.3390/pharmaceutics15041205.
Article CAS PubMed PubMed Central Google Scholar
Asghar J, Latif L, Alexander SPH, Kendall DA. Development of a novel cell-based, In-Cell Western/ERK assay system for the high-throughput screening of agonists acting on the delta-opioid receptor. Front Pharmacol. 2022;13:933356. https://doi.org/10.3389/fphar.2022.933356.
Comments (0)