Disclosing a metabolic signature of cisplatin resistance in MDA-MB-231 triple-negative breast cancer cells by NMR metabolomics

Zhang J, Xia Y, Zhou X, Yu H, Tan Y, et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. https://doi.org/10.3389/fphar.2022.977660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucaciu RL, Hangan AC, Sevastre B, Oprean LS. Metallo-drugs in cancer therapy: past. Present and Future Molecules. 2022;27:6485. https://doi.org/10.3390/molecules27196485.

Article  CAS  PubMed  Google Scholar 

Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53:148–58. https://doi.org/10.2478/raon-2019-0018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giaccone G. Clinical perspectives on platinum resistance. Drugs. 2000;59(Suppl 4):9–17. https://doi.org/10.2165/00003495-200059004-00002.

Article  CAS  PubMed  Google Scholar 

Uno K, Yoshikawa N, Tazaki A, Ohnuma S, Kitami K, et al. Significance of platinum distribution to predict platinum resistance in ovarian cancer after platinum treatment in neoadjuvant chemotherapy. Sci Rep. 2022;12:4513. https://doi.org/10.1038/s41598-022-08503-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Amora P, Silva IDCG, Tewari KS, Bristow RE, Cappuccini F, et al. Platinum resistance in gynecologic malignancies: response, disease free and overall survival are predicted by biochemical signature: a metabolomic analysis. Gynecol Oncol. 2021;163:162–70. https://doi.org/10.1016/j.ygyno.2021.08.001.

Article  CAS  PubMed  Google Scholar 

Bai X, Ni J, Beretov J, Graham P, Li Y. Triple-negative breast cancer therapeutic resistance: where is the Achilles’ heel? Cancer Lett. 2021;497:100–11. https://doi.org/10.1016/j.canlet.2020.10.016.

Article  CAS  PubMed  Google Scholar 

Ciarimboli G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Res. 2014;34:547–50.

CAS  PubMed  Google Scholar 

Chen SH, Chang JY. new insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment. Int J Mol Sci. 2019;20:4136. https://doi.org/10.3390/ijms20174136.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou J, Kang Y, Chen L, Wang H, Liu J, et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol. 2020;11:343. https://doi.org/10.3389/fphar.2020.00343.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Zhao X, Fu J, Xu W, Yuan J. The role of tumour metabolism in cisplatin resistance. Front Mol Biosci. 2021;8:691795. https://doi.org/10.3389/fmolb.2021.691795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poisson LM, Munkarah A, Madi H, Datta I, Hensley-Alford S, et al. A metabolomic approach to identifying platinum resistance in ovarian cancer. J Ovarian Res. 2015;8:13. https://doi.org/10.1186/s13048-015-0140-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghini V, Magherini F, Massai L, Messori L, Turano P. Comparative NMR metabolomics of the responses of A2780 human ovarian cancer cells to clinically established Pt-based drugs. Dalton Trans. 2022;51:12512–23. https://doi.org/10.1039/d2dt02068h.

Article  CAS  PubMed  Google Scholar 

Criscuolo D, Avolio R, Parri M, Romano S, Chiarugi P, et al. Decreased levels of GSH are associated with platinum resistance in high-grade serous ovarian cancer. Antioxidants. 2022;11:1544. https://doi.org/10.3390/antiox11081544.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acland M, Lokman NA, Young C, Anderson D, Condina M, et al. Chemoresistant cancer cell lines are characterized by migratory, amino acid metabolism, protein catabolism and IFN1 signalling perturbations. Cancers. 2022;14:2763. https://doi.org/10.3390/cancers14112763.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galvez L, Rusz M, Schwaiger-Haber M, El Abiead Y, Hermann G, et al. Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics. 2019;11:1716–28. https://doi.org/10.1039/c9mt00141g.

Article  CAS  PubMed  Google Scholar 

Herrmann HA, Rusz M, Baier D, Jakupec MA, Keppler BK, et al. Thermodynamic genome-scale metabolic modeling of metallodrug resistance in colorectal cancer. Cancers. 2021;13:4130. https://doi.org/10.3390/cancers13164130.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;7:209–49. https://doi.org/10.3322/caac.21660.

Article  Google Scholar 

Demas DM, Demo S, Fallah Y, Clarke R, Nephew KP, et al. Glutamine metabolism drives growth in advanced hormone receptor positive breast cancer. Front Oncol. 2019;9:686. https://doi.org/10.3389/fonc.2019.00686.

Article  PubMed  PubMed Central  Google Scholar 

Tomková V, Sandoval-Acuña C, Torrealba N, Truksa J. Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells. Free Radic Biol Med. 2019;143:510–21. https://doi.org/10.1016/j.freeradbiomed.2019.09.004.

Article  CAS  PubMed  Google Scholar 

Barkovskaya A, Seip K, Prasmickaite L, Mills IG, Moestue SA, Itkonen HM. Inhibition of O-GlcNAc transferase activates tumor-suppressor gene expression in tamoxifen-resistant breast cancer cells. Sci Rep. 2020;10:16992. https://doi.org/10.1038/s41598-020-74083-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pal P, Millner A, Semina SE, Huggins RJ, Running L, et al. Endocrine therapy-resistant breast cancer cells are more sensitive to ceramide kinase inhibition and elevated ceramide levels than therapy-sensitive breast cancer cells. Cancers. 2022;14:2380. https://doi.org/10.3390/cancers14102380.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan Z, Ge C, Feng D, Xu C, Cao B, et al. The Interleukin-6/Signal transducer and activator of transcription-3/Cystathionine γ-lyase axis deciphers the transformation between the sensitive and resistant phenotypes of breast cancer cells. Drug Metab Dispos. 2021;49:985–94. https://doi.org/10.1124/dmd.121.000571.

Article  CAS  PubMed  Google Scholar 

Barata IS, Gomes BC, Rodrigues AS, Rueff J, Kranendonk M, et al. The complex dynamic of phase i drug metabolism in the early stages of doxorubicin resistance in breast cancer cells. Genes. 2022;13:1977. https://doi.org/10.3390/genes13111977.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saha T, Lukong KE. Breast cancer stem-like cells in drug resistance: a review of mechanisms and novel therapeutic strategies to overcome drug resistance. Front Oncol. 2022;12:856974. https://doi.org/10.3389/fonc.2022.856974.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maria RM, Altei WF, Selistre-de-Araujo HS, Colnago LA. Impact of chemotherapy on metabolic reprogramming: characterization of the metabolic profile of breast cancer MDA-MB-231 cells using 1H HR-MAS NMR spectroscopy. J Pharm Biomed Anal. 2017;146:324–8. https://doi.org/10.1016/j.jpba.2017.08.038.

Article  CAS  PubMed  Google Scholar 

Resendiz-Acevedo K, García-Aguilera ME, Esturau-Escofet N, Ruiz-Azuara L. 1H -NMR metabolomics study of the effect of cisplatin and Casiopeina iigly on MDA-MB-231 breast tumor cells. Front Mol Biosci. 2021;8:742859. https://doi.org/10.3389/fmolb.2021.742859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geck RC, Foley JR, Murray Stewart T, Asara JM, Casero RA Jr, et al. Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy. J Biol Chem. 2020;295:6263–77. https://doi.org/10.1074/jbc.RA119.012376.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Granit A, Mishra K, Barasch D, Peretz-Yablonsky T, Eyal S, et al. Metabolomic profiling of triple negative breast cancer cells suggests that valproic acid can enhance the anticancer effect of cisplatin. Front Cell Dev Biol. 2022;10:1014798. https://doi.org/10.3389/fcell.2022.1014798.

Article  PubMed  PubMed Central  Google Scholar 

Vojtek M, Martins CB, Ramos R, Duarte SG, Ferreira IMPLVO, et al. Pd(II) and Pt(II) trinuclear chelates with spermidine: selective anticancer activity towards TNBC-sensitive and -resistant to cisplatin. Pharmaceutics. 2023;15:1205. https://doi.org/10.3390/pharmaceutics15041205.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asghar J, Latif L, Alexander SPH, Kendall DA. Development of a novel cell-based, In-Cell Western/ERK assay system for the high-throughput screening of agonists acting on the delta-opioid receptor. Front Pharmacol. 2022;13:933356. https://doi.org/10.3389/fphar.2022.933356.

Article 

Comments (0)

No login
gif