Molecular modeling of apoE in complexes with Alzheimer’s amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids

Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, Sekijima Y, Westermark P (2022) Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 29:213–219. https://doi.org/10.1080/13506129.2022.2147636

Article  PubMed  Google Scholar 

Bloom GS (2014) Amyloid-β and Tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505. https://doi.org/10.1001/jamaneurol.2013.5847

Article  PubMed  Google Scholar 

Chen Y, Strickland MR, Soranno A, Holtzman DM (2021) Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron 109:205–221. https://doi.org/10.1016/j.neuron.2020.10.008

Article  CAS  PubMed  Google Scholar 

Martens YA, Zhao N, Liu C-C, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G (2022) ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 110:1304–1317. https://doi.org/10.1016/j.neuron.2022.03.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perneczky R, Jessen F, Grimmer T, Levin J, Flöel A, Peters O, Froelich L (2023) Anti-amyloid antibody therapies in Alzheimer’s disease. Brain 146:842–849. https://doi.org/10.1093/brain/awad005

Article  PubMed  Google Scholar 

Stewart KL, Radford SE (2017) Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophys Rev 9:405–419. https://doi.org/10.1007/s12551-017-0271-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misumi Y, Tabata Y, Tasaki M, Obayashi K, Yamakawa S, Nomura T, Ueda M (2023) Binding of serum-derived amyloid-associated proteins to amyloid fibrils. Amyloid 30:67–73. https://doi.org/10.1080/13506129.2022.2120800

Article  CAS  PubMed  Google Scholar 

Wisniewski T, Drummond E (2020) APOE-amyloid interaction: therapeutic targets. Neurobiol Dis 138:104784. https://doi.org/10.1016/j.nbd.2020.104784

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murray KA, Hu CJ, Griner SL, Pan H, Bowler JT, Abskharon R, Rosenberg GM, Cheng X, Seidler PM, Eisenberg DS (2022) De novo designed protein inhibitors of amyloid aggregation and seeding. Proc Natl Acad Sci 119:e2206240119. https://doi.org/10.1073/pnas.2206240119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE (2018) A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19:755–773. https://doi.org/10.1038/s41580-018-0060-8

Article  CAS  PubMed  Google Scholar 

Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS (2021) The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell 184:4857–4873. https://doi.org/10.1016/j.cell.2021.08.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewkowicz E, Jayaraman S, Gursky O (2021) Protein amyloid cofactors: charged side-chain arrays meet their match? Trends Biochem Sci 46:626–629. https://doi.org/10.1016/j.tibs.2021.05.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao Y, Sun Y, Lv S, Xia W, Zhao K, Xu Q, Zhao Q, He L, Le W, Wang Y, Liu C, Li D (2022) Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology. Nat Commun 13:4226. https://doi.org/10.1038/s41467-022-31790-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abskharon R, Sawaya MR, Boyer DR, Cao Q, Nguyen BA, Cascio D, Eisenberg DS (2022) Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Proc Natl Acad Sci 119:e2119952119. https://doi.org/10.1073/pnas.2119952119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, Kotecha A, Murzin AG, Peak-Chew SY, Macdonald J, Lavenir I, Garringer HJ, Gelpi E, Newell KL, Kovacs GG, Vidal R, Ghetti B, Ryskeldi-Falcon B, Scheres SHW, Goedert M (2022) Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 375:167–172. https://doi.org/10.1126/science.abm7285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seuring C, Verasdonck J, Gath J, Ghosh D, Nespovitaya N, Wälti MA, Maji SK, Cadalbert R, Güntert P, Meier BH, Riek R (2020) The three-dimensional structure of human β-endorphin amyloid fibrils. Nat Struct Mol Biol 27:1178–1184. https://doi.org/10.1038/s41594-020-00515-z

Article  CAS  PubMed  Google Scholar 

Seong S-Y, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4:469–478. https://doi.org/10.1038/nri1372

Article  CAS  PubMed  Google Scholar 

Frieg B, Antonschmidt L, Dienemann C, Geraets JA, Najbauer EE, Matthes D, de Groot BL, Andreas LB, Becker S, Griesinger C, Schröder GF (2022) The 3D structure of lipidic fibrils of α-synuclein. Nat Commun 13:6810. https://doi.org/10.1038/s41467-022-34552-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips MC (2014) Apolipoprotein E isoforms and lipoprotein metabolism: apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66:616–623. https://doi.org/10.1002/iub.1314

Article  CAS  PubMed  Google Scholar 

Mahley RW (2016) Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med 94:739–746. https://doi.org/10.1007/s00109-016-1427-y

Article  CAS  PubMed  Google Scholar 

Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C, Holtzman DM (2013) ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1220484110

Article  PubMed  PubMed Central  Google Scholar 

Kanekiyo T, Xu H, Bu G (2014) ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron 81:740–754. https://doi.org/10.1016/j.neuron.2014.01.045

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R (2018) Plasma apolipoprotein E levels and risk of dementia: a Mendelian randomization study of 106,562 individuals. Alzheimers Dement 14:71–80. https://doi.org/10.1016/j.jalz.2017.05.006

Article  PubMed  Google Scholar 

Segrest J, Jones M, De Loof H, Brouillette C, Venkatachalapathi Y, Anantharamaiah G (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33:141–166. https://doi.org/10.1016/S0022-2275(20)41536-6

Article  CAS  PubMed  Google Scholar 

Morrow JA, Hatters DM, Lu B, Höchtl P, Oberg KA, Rupp B, Weisgraber KH (2002) Apolipoprotein E4 forms a molten globule. J Biol Chem 277:50380–50385. https://doi.org/10.1074/jbc.M204898200

Article  CAS  PubMed  Google Scholar 

Narayanaswami V, Maiorano JN, Dhanasekaran P, Ryan RO, Phillips MC, Lund-Katz S, Davidson WS (2004) Helix orientation of the functional domains in apolipoprotein e in discoidal high density lipoprotein particles. J Biol Chem 279:14273–14279. https://doi.org/10.1074/jbc.M313318200

Article  CAS  PubMed  Google Scholar 

Hatters DM, Voss JC, Budamagunta MS, Newhouse YN, Weisgraber KH (2009) Insight on the molecular envelope of lipid-bound apolipoprotein E from electron paramagnetic resonance spectroscopy. J Mol Biol 386:261–271. https://doi.org/10.1016/j.jmb.2008.12.040

Article  CAS  PubMed  Google Scholar 

Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci 108:14813–14818. https://doi.org/10.1073/pnas.1106420108

Article  PubMed  PubMed Central  Google Scholar 

Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–1822. https://doi.org/10.1126/science.2063194

Article  CAS  PubMed  Google Scholar 

Frieden C, Wang H, Ho CMW (2017) A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain–domain interactions. Proc Natl Acad Sci 114:6292–6297. https://doi.org/10.1073/pnas.1705080114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henry N, Krammer E-M, Stengel F, Adams Q, Van Liefferinge F, Hubin E, Chaves R, Efremov R, Aebersold R, Vandenbussche G, Prévost M, Raussens V, Deroo S (2018) Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. PLOS Comput Biol 14:e1006165. https://doi.org/10.1371/journal.pcbi.1006165

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif