A comprehensive multiomics approach reveals that high levels of sphingolipids in cardiac cachexia adipose tissue are associated with inflammatory and fibrotic changes

Springer J, Anker SD. Publication trends in cachexia and sarcopenia in elderly heart failure patients. Wien Klin Wochenschr. 2016;128:446–54.

Article  PubMed  Google Scholar 

Loncar G, Springer J, Anker M, Doehner W, Lainscak M. Cardiac cachexia: hic et nunc. J Cachexia Sarcopenia Muscle. 2016;7:246–60.

Article  PubMed  PubMed Central  Google Scholar 

Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793–9.

Article  CAS  PubMed  Google Scholar 

Christensen HM, Kistorp C, Schou M, Keller N, Zerahn B, Frystyk J, Schwarz P, Faber J. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine. 2013;43:626–34.

Article  CAS  PubMed  Google Scholar 

Trullàs JC, Formiga F, Montero M, Carrera-Izquierdo M, Grau-Amorós J, Chivite-Guillén D, Manzano L. Impact of weight loss on mortality in chronic heart failure: findings from the RICA Registry. Int J Cardiol. 2013;168:306–11.

Article  PubMed  Google Scholar 

Okoshi MP, Capalbo RV, Romeiro FG, Okoshi K. Cardiac Cachexia: Perspectives for Prevention and Treatment. Arq Bras Cardiol. 2017;108:74–80.

CAS  PubMed  PubMed Central  Google Scholar 

Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle. 2014;5:253–9.

Article  PubMed  PubMed Central  Google Scholar 

Farkas J, von Haehling S, Kalantar-Zadeh K, Morley JE, Anker SD, Lainscak M. Cachexia as a major public health problem: frequent, costly, and deadly. J Cachexia Sarcopenia Muscle. 2013;4:173–8.

Article  PubMed  PubMed Central  Google Scholar 

von Haehling S, Anker MS, Anker SD. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J Cachexia Sarcopenia Muscle. 2016;7:507–9.

Article  Google Scholar 

Martins T, Vitorino R, Moreira-Gonçalves D, Amado F, Duarte JA, Ferreira R. Recent insights on the molecular mechanisms and therapeutic approaches for cardiac cachexia. Clin Biochem. 2014;47:8–15.

Article  CAS  PubMed  Google Scholar 

Rahman A, Jafry S, Jeejeebhoy K, Nagpal AD, Pisani B, Agarwala R. Malnutrition and Cachexia in Heart Failure. JPEN J Parenter Enteral Nutr. 2016;40:475–86.

Article  CAS  PubMed  Google Scholar 

Jensen J, Trayhurn P, Handberg A, Eckel J. Adipose tissue. Editorial. Arch Physiol Biochem. 2011;117:45–6.

Article  CAS  PubMed  Google Scholar 

Melenovsky V, Kotrc M, Borlaug BA, Marek T, Kovar J, Malek I, Kautzner J. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol. 2013;62:1660–70.

Article  PubMed  Google Scholar 

Mehra MR. Fat, cachexia, and the right ventricle in heart failure: a web of complicity. J Am Coll Cardiol. 2013;62:1671–3.

Article  PubMed  Google Scholar 

Marcelin G, Gautier EL, Clément K. Adipose tissue fibrosis in obesity: etiology and challenges. Annu Rev Physiol. 2022;84:135–55.

Article  CAS  PubMed  Google Scholar 

Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094–101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Auger C, Kajimura S. Adipose tissue remodeling in pathophysiology. Annu Rev Pathol. 2023;18:71–93.

Article  CAS  PubMed  Google Scholar 

Bing C, Russell S, Becket E, Pope M, Tisdale MJ, Trayhurn P, Jenkins JR. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br J Cancer. 2006;95:1028–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alves MJ, Figuerêdo RG, Azevedo FF, Cavallaro DA, Neto NI, Lima JD, Matos-Neto E, Radloff K, Riccardi DM, Camargo RG, et al. Adipose tissue fibrosis in human cancer cachexia: the role of TGFβ pathway. BMC Cancer. 2017;17:190.

Article  PubMed  PubMed Central  Google Scholar 

Reggio S, Rouault C, Poitou C, Bichet JC, Prifti E, Bouillot JL, Rizkalla S, Lacasa D, Tordjman J, Clément K. Increased basement membrane components in adipose tissue during obesity: links with TGFβ and metabolic phenotypes. J Clin Endocrinol Metab. 2016;101:2578–87.

Article  CAS  PubMed  Google Scholar 

Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang S, Su Y, Wang Q, Lv L, Xue C, Xu L, Li L. Multi-omics analysis of the effects of dietary changes and probiotics on diet-induced obesity. Curr Res Food Sci. 2023;6:100435.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SQ, Mohallem R, Franco J, Buhman KK, Kim KH, Aryal UK. Multi-omics approach reveals dysregulation of protein phosphorylation correlated with lipid metabolism in mouse non-alcoholic fatty liver. Cells. 2022;11:1172.

Liesenfeld DB, Grapov D, Fahrmann JF, Salou M, Scherer D, Toth R, Habermann N, Böhm J, Schrotz-King P, Gigic B, et al. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study. Am J Clin Nutr. 2015;102:433–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molinari F, Malara N, Mollace V, Rosano G, Ferraro E. Animal models of cardiac cachexia. Int J Cardiol. 2016;219:105–10.

Article  PubMed  Google Scholar 

Steffen BT, Lees SJ, Booth FW. Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J Appl Physiol. 1985;2008(105):1950–8.

Google Scholar 

Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Voelkel NF, Bogaard HJ. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol. 2012;302:L363–369.

Article  CAS  PubMed  Google Scholar 

Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83.

Article  CAS  PubMed  Google Scholar 

Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5:1005–18.

Article  CAS  PubMed  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Li MC, Konaté MM, Chen L, Das B, Karlovich C, Williams PM, Evrard YA, Doroshow JH, McShane LM. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J Transl Med. 2021;19:269.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang J, Wang D, Yang Y, Yang W, Jin W, Niu X, Gong J. A systematic comparison of normalization methods for eQTL analysis. Brief Bioinform. 2021;22:bbab193.

Cheng A, Johnson CL, Ford LP. A step-by-step procedure to analyze the efficacy of siRNA using real-time PCR. Methods Mol Biol. 2008;419:303–16.

Article  CAS  PubMed  Google Scholar 

Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol. 2003;4:397–407.

Article  CAS  PubMed  Google Scholar 

Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol. 2005;5:560–70.

Article  CAS  PubMed  Google Scholar 

Yang L, Yue S, Yang L, Liu X, Han Z, Zhang Y, Li L. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J Hepatol. 2013;59:114–23.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif