Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. https://doi.org/10.3322/caac.21763
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5:87. https://doi.org/10.1038/s41392-020-0187-x
Article PubMed PubMed Central Google Scholar
Berndt N, Eckstein J, Heucke N, Gajowski R, Stockmann M, Meierhofer D, et al. Characterization of lipid and lipid droplet metabolism in human HCC. Cells. 2019;8. https://doi.org/10.3390/cells8050512.
Bidkhori G, Benfeitas R, Klevstig M, Zhang C, Nielsen J, Uhlen M, et al. Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc Natl Acad Sci USA. 2018;115:E11874–e11883. https://doi.org/10.1073/pnas.1807305115
Article CAS PubMed PubMed Central Google Scholar
Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61. https://doi.org/10.1016/j.cmet.2013.05.017
Article CAS PubMed PubMed Central Google Scholar
Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 2011;140:1071–83. https://doi.org/10.1053/j.gastro.2010.12.006
Article CAS PubMed Google Scholar
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77. https://doi.org/10.1038/nrc2222
Article CAS PubMed Google Scholar
Peck B, Schug ZT, Zhang Q, Dankworth B, Jones DT, Smethurst E, et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 2016;4:6 https://doi.org/10.1186/s40170-016-0146-8
Article PubMed PubMed Central Google Scholar
Sounni NE, Cimino J, Blacher S, Primac I, Truong A, Mazzucchelli G, et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab. 2014;20:280–94. https://doi.org/10.1016/j.cmet.2014.05.022
Article CAS PubMed Google Scholar
Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22. https://doi.org/10.1038/s41416-019-0650-z
Article CAS PubMed Google Scholar
Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and furious: lipid metabolism in antitumoral therapy response and resistance. Trends Cancer. 2021;7:198–213. https://doi.org/10.1016/j.trecan.2020.10.004
Article CAS PubMed Google Scholar
Del Río-Moreno M, Alors-Pérez E, González-Rubio S, Ferrín G, Reyes O, Rodríguez-Perálvarez M, et al. Dysregulation of the splicing machinery is associated to the development of nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2019;104:3389–402. https://doi.org/10.1210/jc.2019-00021
Article PubMed PubMed Central Google Scholar
Choi SH, Flamand MN, Liu B, Zhu H, Hu M, Wang M, et al. RBM45 is an m(6)A-binding protein that affects neuronal differentiation and the splicing of a subset of mRNAs. Cell Rep. 2022;40:111293. https://doi.org/10.1016/j.celrep.2022.111293
Article CAS PubMed PubMed Central Google Scholar
Du D, Qin M, Shi L, Liu C, Jiang J, Liao Z, et al. RNA binding motif protein 45-mediated phosphorylation enhances protein stability of ASCT2 to promote hepatocellular carcinoma progression. Oncogene. https://doi.org/10.1038/s41388-023-02795-3 (2023).
Mashiko T, Sakashita E, Kasashima K, Tominaga K, Kuroiwa K, Nozaki Y, et al. Developmentally regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a nuclear-cytoplasmic trafficking protein, forms TAR DNA-binding Protein 43 (TDP-43)-mediated cytoplasmic aggregates. J Biol Chem. 2016;291:14996–5007. https://doi.org/10.1074/jbc.M115.712232
Article CAS PubMed PubMed Central Google Scholar
Gebauer F, Schwarzl T, Valcarcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22:185–98. https://doi.org/10.1038/s41576-020-00302-y
Article CAS PubMed Google Scholar
Blackinton JG, Keene JD. Post-transcriptional RNA regulons affecting cell cycle and proliferation. Semin Cell Dev Biol. 2014;34:44–54. https://doi.org/10.1016/j.semcdb.2014.05.014
Article CAS PubMed Google Scholar
Singh AK, Aryal B, Zhang X, Fan Y, Price NL, Suárez Y, et al. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins. Semin Cell Dev Biol. 2018;81:129–40. https://doi.org/10.1016/j.semcdb.2017.11.026
Article CAS PubMed Google Scholar
Sutherland LC, Rintala-Maki ND, White RD, Morin CD. RNA binding motif (RBM) proteins: a novel family of apoptosis modulators? J Cell Biochem. 2005;94:5–24. https://doi.org/10.1002/jcb.20204
Article CAS PubMed Google Scholar
Li Z, Guo Q, Zhang J, Fu Z, Wang Y, Wang T, et al. The RNA-binding motif protein family in cancer: friend or foe? Front Oncol. 2021;11:757135. https://doi.org/10.3389/fonc.2021.757135
Article CAS PubMed PubMed Central Google Scholar
Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582:1977–86. https://doi.org/10.1016/j.febslet.2008.03.004
Article CAS PubMed PubMed Central Google Scholar
Li Y, Collins M, An J, Geiser R, Tegeler T, Tsantilas K, et al. Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein-protein interaction network. Brain Res. 2016;1647:79–93. https://doi.org/10.1016/j.brainres.2016.02.047
Article CAS PubMed PubMed Central Google Scholar
Caron A, Richard D, Laplante M. The Roles of mTOR complexes in lipid metabolism. Annu Rev Nutr. 2015;35:321–48. https://doi.org/10.1146/annurev-nutr-071714-034355
Article CAS PubMed Google Scholar
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203. https://doi.org/10.1038/s41580-019-0199-y
Article CAS PubMed PubMed Central Google Scholar
Grabinski N, Ewald F, Hofmann BT, Staufer K, Schumacher U, Nashan B, et al. Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells. Mol Cancer. 2012;11:85. https://doi.org/10.1186/1476-4598-11-85
Article CAS PubMed PubMed Central Google Scholar
O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8. https://doi.org/10.1158/0008-5472.Can-05-2925
Article PubMed PubMed Central Google Scholar
Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 2009;69:1821–7. https://doi.org/10.1158/0008-5472.CAN-08-3014
Article CAS PubMed PubMed Central Google Scholar
Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases. Oncol Lett. 2018;16:1390–6. https://doi.org/10.3892/ol.2018.8843
Article CAS PubMed PubMed Central Google Scholar
Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 2013;52:165–74. https://doi.org/10.1016/j.plipres.2012.10.004
Article CAS PubMed Google Scholar
Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G, et al. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem. 2009;284:27816–26. https://doi.org/10.1074/jbc.M109.022467
Article CAS PubMed PubMed Central Google Scholar
Yan S, Yang XF, Liu HL, Fu N, Ouyang Y, Qing K. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol. 2015;21:3492–8. https://doi.org/10.3748/wjg.v21.i12.3492
Article CAS PubMed PubMed Central Google Scholar
Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19:405–14. https://doi.org/10.1038/s41568-019-0149-1
Comments (0)