RBM45 reprograms lipid metabolism promoting hepatocellular carcinoma via Rictor and ACSL1/ACSL4

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. https://doi.org/10.3322/caac.21763

Article  PubMed  Google Scholar 

Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5:87. https://doi.org/10.1038/s41392-020-0187-x

Article  PubMed  PubMed Central  Google Scholar 

Berndt N, Eckstein J, Heucke N, Gajowski R, Stockmann M, Meierhofer D, et al. Characterization of lipid and lipid droplet metabolism in human HCC. Cells. 2019;8. https://doi.org/10.3390/cells8050512.

Bidkhori G, Benfeitas R, Klevstig M, Zhang C, Nielsen J, Uhlen M, et al. Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc Natl Acad Sci USA. 2018;115:E11874–e11883. https://doi.org/10.1073/pnas.1807305115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61. https://doi.org/10.1016/j.cmet.2013.05.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 2011;140:1071–83. https://doi.org/10.1053/j.gastro.2010.12.006

Article  CAS  PubMed  Google Scholar 

Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77. https://doi.org/10.1038/nrc2222

Article  CAS  PubMed  Google Scholar 

Peck B, Schug ZT, Zhang Q, Dankworth B, Jones DT, Smethurst E, et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 2016;4:6 https://doi.org/10.1186/s40170-016-0146-8

Article  PubMed  PubMed Central  Google Scholar 

Sounni NE, Cimino J, Blacher S, Primac I, Truong A, Mazzucchelli G, et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab. 2014;20:280–94. https://doi.org/10.1016/j.cmet.2014.05.022

Article  CAS  PubMed  Google Scholar 

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22. https://doi.org/10.1038/s41416-019-0650-z

Article  CAS  PubMed  Google Scholar 

Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and furious: lipid metabolism in antitumoral therapy response and resistance. Trends Cancer. 2021;7:198–213. https://doi.org/10.1016/j.trecan.2020.10.004

Article  CAS  PubMed  Google Scholar 

Del Río-Moreno M, Alors-Pérez E, González-Rubio S, Ferrín G, Reyes O, Rodríguez-Perálvarez M, et al. Dysregulation of the splicing machinery is associated to the development of nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2019;104:3389–402. https://doi.org/10.1210/jc.2019-00021

Article  PubMed  PubMed Central  Google Scholar 

Choi SH, Flamand MN, Liu B, Zhu H, Hu M, Wang M, et al. RBM45 is an m(6)A-binding protein that affects neuronal differentiation and the splicing of a subset of mRNAs. Cell Rep. 2022;40:111293. https://doi.org/10.1016/j.celrep.2022.111293

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du D, Qin M, Shi L, Liu C, Jiang J, Liao Z, et al. RNA binding motif protein 45-mediated phosphorylation enhances protein stability of ASCT2 to promote hepatocellular carcinoma progression. Oncogene. https://doi.org/10.1038/s41388-023-02795-3 (2023).

Mashiko T, Sakashita E, Kasashima K, Tominaga K, Kuroiwa K, Nozaki Y, et al. Developmentally regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a nuclear-cytoplasmic trafficking protein, forms TAR DNA-binding Protein 43 (TDP-43)-mediated cytoplasmic aggregates. J Biol Chem. 2016;291:14996–5007. https://doi.org/10.1074/jbc.M115.712232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gebauer F, Schwarzl T, Valcarcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22:185–98. https://doi.org/10.1038/s41576-020-00302-y

Article  CAS  PubMed  Google Scholar 

Blackinton JG, Keene JD. Post-transcriptional RNA regulons affecting cell cycle and proliferation. Semin Cell Dev Biol. 2014;34:44–54. https://doi.org/10.1016/j.semcdb.2014.05.014

Article  CAS  PubMed  Google Scholar 

Singh AK, Aryal B, Zhang X, Fan Y, Price NL, Suárez Y, et al. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins. Semin Cell Dev Biol. 2018;81:129–40. https://doi.org/10.1016/j.semcdb.2017.11.026

Article  CAS  PubMed  Google Scholar 

Sutherland LC, Rintala-Maki ND, White RD, Morin CD. RNA binding motif (RBM) proteins: a novel family of apoptosis modulators? J Cell Biochem. 2005;94:5–24. https://doi.org/10.1002/jcb.20204

Article  CAS  PubMed  Google Scholar 

Li Z, Guo Q, Zhang J, Fu Z, Wang Y, Wang T, et al. The RNA-binding motif protein family in cancer: friend or foe? Front Oncol. 2021;11:757135. https://doi.org/10.3389/fonc.2021.757135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582:1977–86. https://doi.org/10.1016/j.febslet.2008.03.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Collins M, An J, Geiser R, Tegeler T, Tsantilas K, et al. Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein-protein interaction network. Brain Res. 2016;1647:79–93. https://doi.org/10.1016/j.brainres.2016.02.047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caron A, Richard D, Laplante M. The Roles of mTOR complexes in lipid metabolism. Annu Rev Nutr. 2015;35:321–48. https://doi.org/10.1146/annurev-nutr-071714-034355

Article  CAS  PubMed  Google Scholar 

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203. https://doi.org/10.1038/s41580-019-0199-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grabinski N, Ewald F, Hofmann BT, Staufer K, Schumacher U, Nashan B, et al. Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells. Mol Cancer. 2012;11:85. https://doi.org/10.1186/1476-4598-11-85

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8. https://doi.org/10.1158/0008-5472.Can-05-2925

Article  PubMed  PubMed Central  Google Scholar 

Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 2009;69:1821–7. https://doi.org/10.1158/0008-5472.CAN-08-3014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases. Oncol Lett. 2018;16:1390–6. https://doi.org/10.3892/ol.2018.8843

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 2013;52:165–74. https://doi.org/10.1016/j.plipres.2012.10.004

Article  CAS  PubMed  Google Scholar 

Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G, et al. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem. 2009;284:27816–26. https://doi.org/10.1074/jbc.M109.022467

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan S, Yang XF, Liu HL, Fu N, Ouyang Y, Qing K. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol. 2015;21:3492–8. https://doi.org/10.3748/wjg.v21.i12.3492

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19:405–14. https://doi.org/10.1038/s41568-019-0149-1

Article 

留言 (0)

沒有登入
gif