The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts

Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

Article  CAS  PubMed  Google Scholar 

Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonnal, S. C., Lopez-Oreja, I. & Valcarcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. 17, 457–474 (2020).

Article  PubMed  Google Scholar 

Pistoni, M., Ghigna, C. & Gabellini, D. Alternative splicing and muscular dystrophy. RNA Biol. 7, 441–452 (2010).

Article  CAS  PubMed  Google Scholar 

Quesnel-Vallieres, M., Weatheritt, R. J., Cordes, S. P. & Blencowe, B. J. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat. Rev. Genet. 20, 51–63 (2019).

Article  CAS  PubMed  Google Scholar 

Naro, C. et al. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Dev. Cell 41, 82–93 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2022).

Irimia, M. et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159, 1511–1523 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weatheritt, R. J., Davey, N. E. & Gibson, T. J. Linear motifs confer functional diversity onto splice variants. Nucleic Acids Res. 40, 7123–7131 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinitcyn, P. et al. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01714-x (2023). This paper demonstrates the abundance of splicing-derived protein isoforms at the protein level using deep-coverage mass spectrometry.

Gabut, M. et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147, 132–146 (2011).

Article  CAS  PubMed  Google Scholar 

Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).

Article  CAS  PubMed  Google Scholar 

Weatheritt, R. J. & Gibson, T. J. Linear motifs: lost in (pre)translation. Trends Biochem. Sci. 37, 333–341 (2012).

Article  CAS  PubMed  Google Scholar 

Chatterjee, T. K. & Fisher, R. A. Mild heat and proteotoxic stress promote unique subcellular trafficking and nucleolar accumulation of RGS6 and other RGS proteins. Role of the RGS domain in stress-induced trafficking of RGS proteins. J. Biol. Chem. 278, 30272–30282 (2003).

Article  CAS  PubMed  Google Scholar 

Chatterjee, T. K., Liu, Z. & Fisher, R. A. Human RGS6 gene structure, complex alternative splicing, and role of N terminus and G protein γ-subunit-like (GGL) domain in subcellular localization of RGS6 splice variants. J. Biol. Chem. 278, 30261–30271 (2003).

Article  CAS  PubMed  Google Scholar 

Dudek, S. M., Birukov, K. G., Zhan, X. & Garcia, J. G. Novel interaction of cortactin with endothelial cell myosin light chain kinase. Biochem. Biophys. Res. Commun. 298, 511–519 (2002).

Article  CAS  PubMed  Google Scholar 

Seo, P. S. et al. Alternatively spliced exon 5 of the FERM domain of protein 4.1R encodes a novel binding site for erythrocyte p55 and is critical for membrane targeting in epithelial cells. Biochim. Biophys. Acta 1793, 281–289 (2009).

Article  CAS  PubMed  Google Scholar 

Day, J. M. et al. Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J. Biol. Chem. 279, 12511–12518 (2004).

Article  CAS  PubMed  Google Scholar 

Erdmann, K. S. et al. The adenomatous polyposis coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Oncogene 19, 3894–3901 (2000).

Article  CAS  PubMed  Google Scholar 

Kachel, N. et al. Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. J. Mol. Biol. 334, 143–155 (2003).

Article  CAS  PubMed  Google Scholar 

Seol, D. W. & Billiar, T. R. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J. Biol. Chem. 274, 2072–2076 (1999).

Article  CAS  PubMed  Google Scholar 

Walma, T. et al. A closed binding pocket and global destabilization modify the binding properties of an alternatively spliced form of the second PDZ domain of PTP-BL. Structure 12, 11–20 (2004).

Article  CAS  PubMed  Google Scholar 

Tian, X. et al. DIPK2A promotes STX17- and VAMP7-mediated autophagosome–lysosome fusion by binding to VAMP7B. Autophagy 16, 797–810 (2020).

Article  CAS  PubMed  Google Scholar 

Warren, C. F. A., Wong-Brown, M. W. & Bowden, N. A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 10, 177 (2019).

Google Scholar 

Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

Article  CAS  PubMed  Google Scholar 

Fletcher, J. I. et al. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc. Natl Acad. Sci. USA 105, 18081–18087 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edlich, F. et al. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moldoveanu, T. & Czabotar, P. E. BAX, BAK, and BOK: a coming of age for the BCL-2 family effector proteins. Cold Spring Harb. Perspect. Biol. 12, a036319 (2020).

CAS  Google Scholar 

Lindenboim, L., Kringel, S., Braun, T., Borner, C. & Stein, R. Bak but not Bax is essential for Bcl-xS-induced apoptosis. Cell Death Differ. 12, 713–723 (2005).

CAS  Google Scholar 

Minn, A. J., Boise, L. H. & Thompson, C. B. Bcl-xS antagonizes the protective effects of Bcl-xL. J. Biol. Chem. 271, 6306–6312 (1996).

Article  CAS  PubMed  Google Scholar 

Plotz, M., Gillissen, B., Hossini, A. M., Daniel, P. T. & Eberle, J. Disruption of the VDAC2–Bak interaction by Bcl-xS mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ. 19, 1928–1938 (2012).

CAS  Google Scholar 

Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

Article  CAS  PubMed  Google Scholar 

Lam, S. D., Babu, M. M., Lees, J. & Orengo, C. A. Biological impact of mutually exclusive exon switching. PLoS Comput. Biol. 17, e1008708 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chellaiah, A. T., McEwen, D. G., Werner, S., Xu, J. & Ornitz, D. M. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem. 269, 11620–11627 (1994).

Article  CAS  PubMed  Google Scholar 

Ornitz, D. M. et al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292–15297 (1996).

Article 

留言 (0)

沒有登入
gif