Evolution and function of chromatin domains across the tree of life

Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acemel, R. D. & Lupiáñez, D. G. Evolution of 3D chromatin organization at different scales. Curr. Opin. Genet. Dev. 78, 102019 (2023).

Article  CAS  PubMed  Google Scholar 

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

Article  CAS  PubMed  Google Scholar 

Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vazquez, J., Belmont, A. S. & Sedat, J. W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 11, 1227–1239 (2001).

Article  CAS  PubMed  Google Scholar 

Hübner, M. R. & Spector, D. L. Chromatin dynamics. Annu. Rev. Biophys. 39, 471–489 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Harmston, N. et al. Topologically associating domains are ancient features that coincide with metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kikuta, H. et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17, 545–555 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolt, C. C. & Duboule, D. The regulatory landscapes of developmental genes. Development 147, dev171736 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Cazet, J. F. et al. New Hydra genomes reveal conserved principles of hydrozoan transcriptional regulation. Genome Res. 33, 283–298 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidbaur, H. et al. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nat. Commun. 13, 2172 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lukyanchikova, V. et al. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat. Commun. 13, 1960 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marlétaz, F. et al. The little skate genome and the evolutionary emergence of wing-like fins. Nature 616, 495–503 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, 6456–6465 (2015).

Article  Google Scholar 

Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A. & Mirny, L. A. Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb. Symp. Quant. Biol. 82, 45–55 (2017).

Article  PubMed  Google Scholar 

Mizuguchi, T. et al. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516, 432–435 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson, I. F. et al. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, 2671–2685 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoencamp, C. & Rowland, B. D. Genome control by SMC complexes. Nat. Rev. Mol. Cell Biol. 24, 633–650 (2023).

CAS  Google Scholar 

Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Bortle, K. et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 15, R82 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Kahn, T. G. et al. Topological screen identifies hundreds of Cp190- and CTCF-dependent Drosophila chromatin insulator elements. Sci. Adv. 9, eade0090 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pollex, T. et al. Chromatin gene–gene loops support the cross-regulation of genes with related function. Mol. Cell 84, 822–838 (2023).

Comments (0)

No login
gif