Virtual reality headsets for perimetry testing: a systematic review

Danesh-Meyer HV, Yap J, Frampton C, Savino PJ. Differentiation of compressive from glaucomatous optic neuropathy with spectral-domain optical coherence tomography. Ophthalmology. 2014;121:1516–23.

Article  PubMed  Google Scholar 

Katz J, Tielsch JM, Quigley HA, Sommer A. Automated perimetry detects visual field loss before manual Goldmann perimetry. Ophthalmology. 1995;102:21–6.

Article  PubMed  CAS  Google Scholar 

Trobe JD. The Physician’s Guide to Eye Care, 2nd, The Foundation of the American Academy of Ophthalmology, San Francisco 2001.

Gardiner SK, Demirel S, Johnson CA. Is there evidence for continued learning over multiple years in perimetry? Optom Vis Sci. 2008;85:1043–8.

Article  PubMed  PubMed Central  Google Scholar 

Bengtsson B, Heijl A. False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Investig Ophthalmol Vis Sci. 2000;41:2201–4.

CAS  Google Scholar 

Ichhpujani P, Thakur S, Sahi R, Kumar S. Validating tablet perimetry against standard humphrey visual field analyzer for glaucoma screening in Indian population. Indian J Ophthalmol. 2021;69:87.

Article  PubMed  Google Scholar 

Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc. 2016;30:4174–83.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kyaw BM, Saxena N, Posadzki P, Vseteckova J, Nikolaou CK, George PP, et al. Virtual reality for health professions education: systematic review and meta-analysis by the digital health education collaboration. J Med Internet Res. 2019;21:e12959.

Article  PubMed  PubMed Central  Google Scholar 

Pur DR, Lee-Wing N, Bona MD. The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation: a systematic review. Graefes Arch Clin Exp Ophthalmol. 2023;261:1743–55.

Article  Google Scholar 

Lieze M, Jelle VC, Benedicte D, Nico V, de W, Mario M, et al. Using virtual reality to investigate physical environmental factors related to cycling in older adults: a comparison between two methodologies. J Transp Health. 2020;19:100921.

Article  Google Scholar 

Montelongo M, Gonzalez A, Morgenstern F, Donahue SP, Groth SL. A virtual reality-based automated perimeter, device, and pilot study. Transl Vis Sci Technol. 2021;10:20.

Article  PubMed  PubMed Central  Google Scholar 

Prager AJ, Kang JM, Tanna AP. Advances in perimetry for glaucoma. Curr Opin Ophthalmol. 2021;32:92.

Article  PubMed  Google Scholar 

Shen J, Xiang H, Luna J, Grishchenko A, Patterson J, Strouse RV, et al. Virtual reality–based executive function rehabilitation system for children with traumatic brain injury: design and usability study. JMIR Serious Games. 2020;8:e16947.

Article  PubMed  PubMed Central  Google Scholar 

Cavedoni S, Cipresso P, Mancuso V, Bruni F, Pedroli E. Virtual reality for the assessment and rehabilitation of neglect: where are we now? A 6-year review update. Virtual Real. 2022;26:1663–704.

Article  PubMed Central  CAS  Google Scholar 

Wilson CJ, Soranzo A. The use of virtual reality in psychology: a case study in visual perception. Comput Math Methods Med. 2015;2015:e151702.

Article  Google Scholar 

Stapelfeldt J, Kucur SS, Huber N, Höhn R, Sznitman R. Virtual reality-based and conventional visual field examination comparison in healthy and glaucoma patients. Transl Vis Sci Technol. 2021;10:10.

Article  PubMed  PubMed Central  Google Scholar 

Wroblewski D, Francis BA, Sadun A, Vakili G, Chopra V. Testing of visual field with virtual reality goggles in manual and visual grasp modes. BioMed Res Int. 2014;2014:e206082.

Article  Google Scholar 

Prea SM, Kong YXG, Mehta A, He M, Crowston JG, Gupta V, et al. Six-month longitudinal comparison of a portable tablet perimeter with the humphrey field analyzer. Am J Ophthalmol. 2018;190:9–16.

Article  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10:89.

Article  PubMed  PubMed Central  Google Scholar 

McKeown S, Mir ZM. Considerations for conducting systematic reviews: evaluating the performance of different methods for de-duplicating references. Syst Rev. 2021;10:38.

Article  PubMed Central  Google Scholar 

Peterson NE, Mekler JA, Crowe S. Visual field screening after stroke with virtual reality headsets [Internet]. PM&R Meeting Abstracts. 2019 [cited 2023 Apr 11]. Available from: https://pmrjabstracts.org/abstract/visual-field-screening-after-stroke-with-virtual-reality-headsets/.

Hotta K, Prima ODA, Imabuchi T, Ito H. VR-HMD eye tracker in active visual field testing. IEEE Conf Virtual Real 3D Use Interfaces (VR). 2019;2019:1843–7.

Google Scholar 

Turner ML, Chia ZK, Nguyen A, Kong AW, Backus BT, Deiner M, et al. Remote longitudinal monitoring of glaucoma using virtual reality-based oculokinetic perimetry. Investig Ophthalmol Vis Sci. 2021;62:3484.

Google Scholar 

Nanti NB, Lenoci J. Comparison of virtual reality visual field testing to humphrey visual field testing in an academic ophthalmology practice. Investig Ophthalmol Vis Sci. 2021;62:3486.

Google Scholar 

Ramachandran R, Paranjpe V, Al-Aswad LA. A feasibility study for the use of virtual reality visual field testing for hospital-based ophthalmic consultations. Investig Ophthalmol Vis Sci. 2022;63:719–F0447.

Google Scholar 

Sayed A, Roongpoovapatr V, Eleiwa T, Kashem R, Abdel-Mottaleb M, Jumbo O, et al. Measurement of monocular and binocular visual field defects with a virtual reality head mounted display. Investig Ophthalmol Vis Sci. 2021;62:3512.

Google Scholar 

Sayed A, Roongpoovapatr V, Eleiwa T, Abou Shousha M, Parrish RK II. Repeatability assessment of monocular and binocular visual field measurements with a head mounted display. Investig Ophthalmol Vis Sci. 2022;63:2570–F0524.

Google Scholar 

Mazerand E, Le Renard M, Hue S, Lemée JM, Klinger E, Menei P. Intraoperative subcortical electrical mapping of the optic tract in awake surgery using a virtual reality headset. World Neurosurg. 2017;97:424–30.

Article  Google Scholar 

Chen YT, Yeh PH, Cheng YC, Su WW, Hwang YS, Chen HSL, et al. Application and Validation of LUXIE: A Newly Developed Virtual Reality Perimetry Software. J Personal Med. 2022;12:1560.

Article  Google Scholar 

Razeghinejad R, Gonzalez-Garcia A, Myers JS, Katz LJ. Preliminary report on a novel virtual reality perimeter compared with standard automated perimetry. J Glaucoma. 2021;30:17–23.

Article  PubMed  Google Scholar 

Labkovich M, Warburton AJ, Ying S, Valliani AA, Kissel N, Serafini RA, et al. Virtual reality hemifield measurements for corrective surgery eligibility in ptosis patients: a pilot clinical trial. Transl Vis Sci Technol 2022;11:35.

Article  PubMed  PubMed Central  Google Scholar 

Greenfield JA, Deiner M, Nguyen A, Wollstein G, Damato B, Backus BT, et al. Measurement reproducibility using vivid vision perimetry: a virtual reality-based mobile platform. Investig Ophthalmol Vis Sci. 2020;61:4800.

Google Scholar 

Greenfield JA, Deiner M, Nguyen A, Wollstein G, Damato B, Backus BT, et al. Virtual reality oculokinetic perimetry test reproducibility and relationship to conventional perimetry and OCT. Ophthalmol Sci. 2022;2:100105.

Article  PubMed  Google Scholar 

Eizenman M, Shi RB, Fee TLY, Mahsood YJ, Buys YM, Trope G. Visual field testing on a personal smartphone. Investig Ophthalmol Vis Sci. 2018;59:6029.

Google Scholar 

Heinzman Z, Alawa K, Marín-Franch I, Turpin A, Wall M. Validation of visual field results of a new open-source virtual reality headset. Investig Ophthalmol Vis Sci. 2022;63:1259–A0399.

Google Scholar 

Johnson C, Rady N, Lopez V, Mijares G, Durbin PM, Nicklin, et al. Correlation between SITA fast visual field strategy measurements and augmented reality-based heru re:vive visual field strategy measurements. Investig Ophthalmol Vis Sci 2022;63:1271–A0411.

Google Scholar 

Phu J, Kalloniatis M. Static automated perimetry using a new head-mounted virtual reality platform, virtual field, compared with the humphrey field Analyzer in glaucoma and optic nerve disease. Investig Ophthalmol Vis Sci. 2021;62:3364.

Google Scholar 

Mees L, Upadhyaya S, Kumar P, Kotowala S, Haran SRS, et al. Validation of a head mounted virtual reality visual field screening device. Investig Ophthalmol Vis Sci 2019;60:2482.

Google Scholar 

Mees L, Upadhyaya S, Kumar P, Kotawala S, Haran S, Rajasekar S, et al. Validation of a head-mounted virtual reality visual field screening device. J Glaucoma. 2020;29:86–91.

Article  PubMed  Google Scholar 

Alawa KA, Han E, Sayed M, Arboleda A, Durkee H, Aguilar M, et al. Low-cost, smartphone based frequency doubling technology visual field testing using virtual reality. Investig Ophthalmol Vis Sci. 2019;60:2481.

Google Scholar 

Alawa KA, Nolan RP, Han E, Arboleda A, Durkee H, Sayed MS, et al. Low-cost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. Br J Ophthalmol. 2021;105:440–4.

Article  PubMed  Google Scholar 

Nida EK, Vandewalle E, Van Keer K, Vanden Abeele V, Geurts L. Clinical validation trial of Glaucoma Easy Screener (GES) as a low-cost and portable visual field screening tool. Acta Ophthalmologica [Internet]. 2019 [cited 2023 Apr 11];97. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-3768.2019.5226.

Tubene L, McLaughlin M. Comparison of virtual field device to humphrey visual field SITA-fast in normal subjects. Investig Ophthalmol Vis Sci. 2021;62:3481.

Google Scholar 

Gregerson C, Annis T, Murri M, Shumway C, Pettey JH, Shah A. Usability of a portable virtual reality device for visual field screening in outreach settings. Investig Ophthalmol Vis Sci. 2020;61:3892.

Google Scholar 

Odayappan A, Sivakumar P, Kotawala S, Raman R, Nachiappan S, Pachiyappan A, et al. Comparison of a new head mount virtual reality perimeter (C3 Field Analyzer) with automated field analyzer in neuro-ophthalmic disorders. J Neuroophthalmol. 2022;43:232–6.

Article  PubMed  Google Scholar 

Ogura K, Sugano M, Takabatake S, Naitoh Y, Nakaoka K. VR application for visual field measurement of unilateral spatial neglect patients using eye tracking. IEEE Int Conf Healthc Inform. 2019;2019:1–2.

Google Scholar 

Soans RS, Renken RJ, John J, Bhongade A, Raj D, Saxena R, et al. Patients prefer a virtual reality approach over a similarly performing screen-based approach for continuous oculomotor-based screening of glaucomatous and neuro-ophthalmological visual field defects. Front Neurosci. 2021;15:745355.

Article  PubMed Central  Google Scholar 

Sircar T, Mishra A, Bopardikar A, Tiwari VN. GearVision: smartphone based head mounted perimeter for detection of visual field defects. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:5402–5.

PubMed  Google Scholar 

留言 (0)

沒有登入
gif