Retinal sensitivity changes in early/intermediate AMD: a systematic review and meta-analysis of visual field testing under mesopic and scotopic lighting

Karadeniz Ugurlu S, Kocakaya Altundal AE, Altin Ekin M. Comparison of vision-related quality of life in primary open-angle glaucoma and dry-type age-related macular degeneration. Eye. 2017;31:395–405.

Article  CAS  PubMed  Google Scholar 

Choudhury F, Varma R, Klein R, Gauderman WJ, Azen SP, McKean-Cowdin R, et al. Age-related macular degeneration and quality of life in latinos: the los angeles latino eye study. JAMA Ophthalmol. 2016;134:683–90.

Article  PubMed  Google Scholar 

Hassell JB, Lamoureux EL, Keeffe JE. Impact of age related macular degeneration on quality of life. Br J Ophthalmol. 2006;90:593–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roque AB, da Silva Borges GF, Abe RY, de Souza OF, Machado MC, Ferreira T, et al. The effects of age-related macular degeneration on quality of life in a Brazilian population. Int J Retin Vitr. 2021;7:20.

Article  Google Scholar 

Hogg RE, Chakravarthy U. Visual function and dysfunction in early and late age-related maculopathy. Prog Retin Eye Res. 2006;25:249–76.

Article  CAS  PubMed  Google Scholar 

Taylor DJ, Hobby AE, Binns AM, Crabb DP. How does age-related macular degeneration affect real-world visual ability and quality of life? A systematic review. BMJ Open. 2016;6:e011504.

Article  PubMed  PubMed Central  Google Scholar 

Mitchell J, Bradley C. Quality of life in age-related macular degeneration: a review of the literature. Health Qual Life Outcomes. 2006;4:97.

Article  PubMed  PubMed Central  Google Scholar 

Slakter JS, Stur M. Quality of life in patients with age-related macular degeneration: impact of the condition and benefits of treatment. Surv Ophthalmol. 2005;50:263–73.

Article  PubMed  Google Scholar 

Acton JH, Greenstein VC. Fundus-driven perimetry (microperimetry) compared to conventional static automated perimetry: similarities, differences, and clinical applications. Can J Ophthalmol. 2013;48:358–63.

Article  PubMed  PubMed Central  Google Scholar 

Cassels NK, Wild JM, Margrain TH, Chong V, Acton JH. The use of microperimetry in assessing visual function in age-related macular degeneration. Surv Ophthalmol. 2018;63:40–55.

Article  PubMed  Google Scholar 

Madheswaran G, Nasim P, Ballae Ganeshrao S, Raman R, Ve RS. Role of microperimetry in evaluating disease progression in age-related macular degeneration: a scoping review. Int Ophthalmol. 2022;42:1975–86.

Article  PubMed  PubMed Central  Google Scholar 

Midena E, Pilotto E. Microperimetry in age-related macular degeneration. Eye. 2017;31:985–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neelam K, Nolan J, Chakravarthy U, Beatty S. Psychophysical function in age-related maculopathy. Surv Ophthalmol. 2009;54:167–210.

Article  PubMed  Google Scholar 

Pfau M, Jolly JK, Wu Z, Denniss J, Lad EM, Guymer RH, et al. Fundus-controlled perimetry (microperimetry): application as outcome measure in clinical trials. Prog Retin Eye Res. 2021;82:100907.

Article  PubMed  Google Scholar 

Rohrschneider K, Bültmann S, Springer C. Use of fundus perimetry (microperimetry) to quantify macular sensitivity. Prog Retin Eye Res. 2008;27:536–48.

Article  PubMed  Google Scholar 

von der Emde L, Pfau M, Holz FG, Fleckenstein M, Kortuem K, Keane PA, et al. Ai-based structure-function correlation in age-related macular degeneration. Eye 2021;35:2110–8.

Article  PubMed  PubMed Central  Google Scholar 

Wong EN, Chew AL, Morgan WH, Patel PJ, Chen FK. The use of microperimetry to detect functional progression in non-neovascular age-related macular degeneration: a systematic review. Asia Pac J Ophthalmol. 2017;6:70–9.

Google Scholar 

Yang Y, Dunbar H. Clinical perspectives and trends: microperimetry as a trial endpoint in retinal disease. Ophthalmologica. 2021;244:418–50.

Article  PubMed  Google Scholar 

Finger RP, Schmitz-Valckenberg S, Schmid M, Rubin GS, Dunbar H, Tufail A, et al. Macustar: development and clinical validation of functional, structural, and patient-reported endpoints in intermediate age-related macular degeneration. Ophthalmologica. 2019;241:61–72.

Article  PubMed  Google Scholar 

Curcio CA, McGwin G, Sadda SR, Hu Z, Clark ME, Sloan KR, et al. Functionally validated imaging endpoints in the alabama study on early age-related macular degeneration 2 (alstar2): design and methods. BMC Ophthalmol. 2020;20:196.

Article  PubMed  PubMed Central  Google Scholar 

Liao DS, Grossi FV, El Mehdi D, Gerber MR, Brown DM, Heier JS, et al. Complement c3 inhibitor Pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology. 2020;127:186–95.

Article  PubMed  Google Scholar 

Donabedian A. Evaluating the quality of medical care. Milbank Q. 2005;83:691–729.

Article  PubMed  PubMed Central  Google Scholar 

Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Age-related macular degeneration preferred practice pattern®. Ophthalmology. 2020;127:P1–65.

Article  PubMed  Google Scholar 

Velentgas P, Dreyer NA, Wu AW. Outcome Definition and Measurement. In: Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide. Agency for Healthcare Research and Quality (US); 2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK126186/.

Balasubramanian S, Uji A, Lei J, Velaga S, Nittala M, Sadda S. Inter-device comparison of retinal sensitivity assessments in a healthy population: the centervue MAIA and the nidek MP-3 microperimeters. Br J Ophthalmol. 2018;102:109–13.

Article  PubMed  Google Scholar 

Steinberg JS, Saßmannshausen M, Pfau M, Fleckenstein M, Finger RP, Holz FG, et al. Evaluation of two systems for fundus-controlled scotopic and mesopic perimetry in eye with age-related macular degeneration. Transl Vis Sci Technol. 2017;6:7.

Article  PubMed  PubMed Central  Google Scholar 

Wong EN, Mackey DA, Morgan WH, Chen FK. Inter-device comparison of retinal sensitivity measurements: the centervue MAIA and the nidek MP-1. Clin Exp Ophthalmol. 2016;44:15–23.

Article  PubMed  Google Scholar 

Choi AYJ, Nivison-Smith L, Khuu SK, Kalloniatis M. Determining spatial summation and its effect on contrast sensitivity across the central 20 degrees of visual field. PLOS ONE. 2016;11:e0158263.

Article  PubMed  PubMed Central  Google Scholar 

Phu J, Khuu SK, Zangerl B, Kalloniatis M. A comparison of Goldmann III, V and spatially equated test stimuli in visual field testing: the importance of complete and partial spatial summation. Ophthalmic Physiol Opt. 2017;37:160–76.

Article  PubMed  PubMed Central  Google Scholar 

Kalloniatis M, Khuu SK. Equating spatial summation in visual field testing reveals greater loss in optic nerve disease. Ophthalmic Physiol Opt. 2016;36:439–52.

Article  PubMed  Google Scholar 

Khuu SK, Kalloniatis M. Spatial summation across the central visual field: implications for visual field testing. J Vis. 2015;15:15.1.6.

Article  PubMed  Google Scholar 

Khuu SK, Kalloniatis M. Standard automated perimetry: determining spatial summation and its effect on contrast sensitivity across the visual field. Invest Ophthalmol Vis Sci. 2015;56:3565–76.

Article  PubMed  Google Scholar 

Pfau M, Lindner M, Steinberg JS, Thiele S, Brinkmann CK, Fleckenstein M, et al. Visual field indices and patterns of visual field deficits in mesopic and dark-adapted two-colour fundus-controlled perimetry in macular diseases. Br J Ophthalmol. 2018;102:1054–9.

Article  PubMed  Google Scholar 

Hansen T, Pracejus L, Gegenfurtner KR. Color perception in the intermediate periphery of the visual field. J Vis. 2009;9:26.1–12.

Article  PubMed  Google Scholar 

Phu J, Khuu SK, Yapp M, Assaad N, Hennessy MP, Kalloniatis M. The value of visual field testing in the era of advanced imaging: clinical and psychophysical perspectives. Clin Exp Optom. 2017;100:313–32.

Article  PubMed  PubMed Central  Google Scholar 

Wright MJ, Johnston A. Spatiotemporal contrast sensitivity and visual field locus. Vis Res. 1983;23:983–9.

Article  CAS  PubMed  Google Scholar 

Fraser RG, Tan R, Ayton LN, Caruso E, Guymer RH, Luu CD. Assessment of retinotopic rod photoreceptor function using a dark-adapted chromatic perimeter in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57:5436–42.

Article  PubMed  Google Scholar 

Tahir HJ, Rodrigo-Diaz E, Parry NRA, Kelly JMF, Carden D, Aslam TM, et al. Slowed dark adaptation in early AMD: dual stimulus reveals scotopic and photopic abnormalities. Invest Ophthalmol Vis Sci. 2018;59:AMD202–10.

Article  PubMed  Google Scholar 

Normann RA, Werblin FS. Control of retinal sensitivity. i. light and dark adaptation of vertebrate rods and cones. J Gen Physiol. 1974;63:37–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalloniatis M, Luu C. Light and dark adaptation. In: Kolb H, Fernandez E, Nelson R, editors. Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995. Available from: http://www.ncbi.nlm.nih.gov/books/NBK11525/.

Comments (0)

No login
gif