The potential key role of choroidal non-perfusion and rod degeneration in the pathogenesis of macular neovascularization type 3

Viola F, Massacesi A, Orzalesi N, Ratiglia R, Staurenghi G. Retinal angiomatous proliferation. Retina. 2009;29:732–9.

Article  PubMed  Google Scholar 

Haj Najeeb B, Deak GG, Mylonas G, Sacu S, Gerendas BS, Schmidt-Erfurth U. The RAP study, report 5: rediscovering macular neovascularization type 3. Retina. 2022;42:485–93.

Article  CAS  PubMed  Google Scholar 

Ravera V, Bottoni F, Giani A, Cigada M, Staurenghi G. Retinal angiomatous proliferation diagnosis. Retina. 2016;36:2274–81.

Article  PubMed  Google Scholar 

Haj Najeeb B, Deak GG, Schmidt‐Erfurth U, Gerendas BS. The RAP study, report 3: Discoloration of the macular region in patients with macular neovascularization type 3. Acta Ophthalmol. 2022;100:aos.14866.

Article  Google Scholar 

Haj Najeeb B, Deak GG, Schmidt-Erfurth UM, Gerendas BS. RAP study, report 1: novel subtype of macular neovascularisation type III, cilioretinal MNV3. Br J Ophthalmol. 2021;105:113–7.

Article  PubMed  Google Scholar 

Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina. 2001;21:416–34.

Article  CAS  PubMed  Google Scholar 

Haj Najeeb B, Schmidt-Erfurth U. Do patients with unilateral macular neovascularization type 3 need AREDS supplements to slow the progression to advanced age-related macular degeneration? Eye. 2023;37:1751–3.

Article  PubMed  Google Scholar 

Su D, Lin S, Phasukkijwatana N, Chen X, Tan A, Freund KB, et al. An updated staging system of type 3 neovascularization using spectral domain optical coherence tomography. Retina. 2016;36:S40–9.

Article  PubMed  Google Scholar 

Spaide RF. New proposal for the pathophysiology of type 3 neovascularization as based on multimodal imaging findings. Retina. 2019;39:1451–64.

Article  CAS  PubMed  Google Scholar 

Christenbury JG, Folgar FA, O’Connell RV, Chiu SJ, Farsiu S, Toth CA. Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci. Ophthalmology. 2013;120:1038–45.

Article  PubMed  Google Scholar 

Kim JH, Chang YS, Kim JW, Kim CG, Lee DW. CHARACTERISTICS OF TYPE 3 NEOVASCULARIZATION LESIONS: Focus on the Incidence of Multifocal Lesions and the Distribution of Lesion. Retina. 2020;40:1124–31.

Article  Google Scholar 

Corvi F, Cozzi M, Corradetti G, Staurenghi G, Sarraf D, Sadda SR. Quantitative assessment of choriocapillaris flow deficits in eyes with macular neovascularization. Graefe’s Arch Clin Exp Ophthalmol. 2021;259:1811–9.

Article  CAS  Google Scholar 

Haj Najeeb B, Deak G, Schmidt-Erfurth U, Gerendas BS. The RAP study, report two : The regional distribution of macular neovascularization type 3, a novel insight into its etiology. Retina. 2020;40:2255–62.

Article  PubMed  Google Scholar 

Haj Najeeb B, Deak GG, Sacu S, Schmidt-Erfurth U, Gerendas BS. The RAP study, report 4: morphological and topographical characteristics of multifocal macular neovascularization type 3. Graefe’s Arch Clin Exp Ophthalmol. 2022;260:141–7.

Article  Google Scholar 

Berlin A, Cabral D, Chen L, Messinger JD, Balaratnasingam C, Mendis R, et al. Histology of type 3 macular neovascularization and microvascular anomalies in treated age-related macular degeneration: a case study. Ophthalmol Sci. 2023;3:100280.

Article  PubMed  PubMed Central  Google Scholar 

Caramoy A, Ristau T, Lechanteur YT, Ersoy L, Müller S, Gelisken F, et al. Environmental and genetic risk factors for retinal angiomatous proliferation. Acta Ophthalmol. 2014;92:745–8.

Article  CAS  PubMed  Google Scholar 

Zhou Q, Daniel E, Maguire MG, Grunwald JE, Martin ER, Martin DF, et al. Pseudodrusen and Incidence of Late Age-Related Macular Degeneration in Fellow Eyes in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2016;123:1530–40.

Article  PubMed  Google Scholar 

Curcio CA, Millican CL, Allen KA, Kalina RE. Aging of the human photoreceptor mosaic: Evidence for selective vulnerability of rods in central retina. Investig Ophthalmol Vis Sci. 1993;34:3278–96.

CAS  Google Scholar 

Sacconi R, Sarraf D, Sadda SR, Freund KB, Servillo A, Fogel Levin MM, et al. Nascent Geographic Atrophy as a Predictor of Type 3 Macular Neovascularization Development. Ophthalmol Retin. 2023;7:586–92.

Article  Google Scholar 

Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292:497–523.

Article  CAS  PubMed  Google Scholar 

Owsley C, McGwin G, Clark ME, Jackson GR, Callahan MA, Kline LB, et al. Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration. Ophthalmology. 2016;123:344–51.

Article  PubMed  Google Scholar 

Owsley C, Clark ME, Huisingh CE, Curcio CA, McGwin G Jr. Visual Function in Older Eyes in Normal Macular Health: Association with Incident Early Age-Related Macular Degeneration 3 Years Later. Invest Ophthalmol Vis Sci. 2016;57:1782–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Owsley C, Swain TA, Mcgwin G, Clark ME, Kar D, Curcio CA. Biologically Guided Optimization of Test Target Location for Rod-mediated Dark Adaptation in Age-related Macular Degeneration Alabama Study on Early Age-related Macular Degeneration 2 Baseline. Ophthalmol Sci. 2023;3:100274.

Article  PubMed  PubMed Central  Google Scholar 

Paavo M, Lee W, Merriam J, Bearelly S, Tsang S, Chang S, et al. Intraretinal Correlates of Reticular Pseudodrusen Revealed by Autofluorescence and En Face OCT. Investig Opthalmol Vis Sci. 2017;58:4769.

Article  CAS  Google Scholar 

Lee J, Kim M, Lee CS, Kim SS, Koh HJ, Lee SC, et al. Drusen subtypes and choroidal characteristics in asian eyes with typical neovascular age-related macular degeneration. Retina. 2020;40:490–8.

Article  CAS  PubMed  Google Scholar 

Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994;35:2857–64.

CAS  PubMed  Google Scholar 

Kim JH, Kim JR, Kang SW, Kim SJ, Ha HS. Thinner Choroid and Greater Drusen Extent in Retinal Angiomatous Proliferation Than in Typical Exudative Age-Related Macular Degeneration. Am J Ophthalmol. 2013;155:743–9.e2.

Article  PubMed  Google Scholar 

Lejoyeux R, Benillouche J, Ong J, Errera M-H, Rossi EA, Singh SR, et al. Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res. 2022;87:100997.

Article  PubMed  Google Scholar 

Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration. Retina. 2013;33:265–76.

Article  PubMed  Google Scholar 

Lains I, Pundlik SJ, Nigalye A, Katz R, Luo G, Kim IK, et al. Baseline predictors associated with 3-year changes in dark adaptation in age-related macular degeneration. Retina. 2021;41:2098–105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zarubina AV, Neely DC, Clark ME, Huisingh CE, Samuels BC, Zhang Y, et al. Prevalence of Subretinal Drusenoid Deposits in Older Persons with and without Age-Related Macular Degeneration, by Multimodal Imaging. Ophthalmology 2016;123:1090–100.

Article  PubMed  Google Scholar 

Alten F, Clemens CR, Heiduschka P, Eter N. Localized Reticular Pseudodrusen and Their Topographic Relation to Choroidal Watershed Zones and Changes in Choroidal Volumes. Investig Opthalmol Vis Sci. 2013;54:3250.

Article  Google Scholar 

Spaide RF. Disease expression in nonexudative age-related macular degeneration varies with choroidal thickness. Retina. 2018;38:708–16.

Article  PubMed  Google Scholar 

Hayreh SS. Segmental nature of the choroidal vasculature. Br J Ophthalmol. 1975;59:631–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boscia F, Furino C, Sborgia L, Reibaldi M, Sborgia C. Photodynamic therapy for retinal angiomatous proliferations and pigment epithelium detachment. Am J Ophthalmol. 2004;138:1077–9.

Article  PubMed  Google Scholar 

Panagiotidis D, Karagiannis DA, Baltatzis S. Photodynamic Therapy in Retinal Angiomatous Proliferation Stage I. Eur J Ophthalmol. 2006;16:326–9.

Article  CAS  PubMed  Google Scholar 

Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C, et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet. 2000;24:127–31.

Article  CAS  PubMed  Google Scholar 

Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang W-X, Gupta N, et al. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci. 2002;99:473–8.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Nowilaty SR, Alsalamah AK, Magliyah MS, Alabdullah AA, Ahmad K, Semidey VA, et al. Incidence and Natural History of Retinochoroidal Neovascularization in Enhanced S-Cone Syndrome. Am J Ophthalmol. 2021;222:174–84.

Article  CAS  PubMed 

Comments (0)

No login
gif