A gene therapy targeting medium-chain acyl-CoA dehydrogenase (MCAD) did not protect against diabetes-induced cardiac pathology

Cavallari I, Bhatt DL, Steg PG, Leiter LA, McGuire DK, Mosenzon O, Im K, Raz I, Braunwald E, Scirica BM (2021) Causes and risk factors for death in diabetes: a competing-risk analysis from the SAVOR-TIMI 53 trial. J Am Coll Cardiol 77(14):1837–1840

Article  PubMed  Google Scholar 

Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34

Article  CAS  PubMed  Google Scholar 

Prakoso D, Tate M, Blasio MJ, Ritchie RH (2021) Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy - current and future perspectives. Clin Sci 135(11):1369–1387

Article  CAS  Google Scholar 

Figtree GA, Rådholm K, Barrett TD, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Matthews DR, Shaw W, Neal B (2019) Effects of canagliflozin on heart failure outcomes associated with preserved and reduced ejection fraction in type 2 diabetes mellitus. Circulation 139(22):2591–2593

Article  PubMed  Google Scholar 

Vaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, Hernandez AF, Inzucchi SE, Kosiborod MN, Lam CSP, Martinez F, Shah SJ, Desai AS, McMurray JJV, Solomon SD (2022) SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400(10354):757–767

Article  CAS  PubMed  Google Scholar 

Snaith JR, Greenfield JR (2022) Sodium-glucose cotransporter 2 inhibitors in type 1 diabetes: a missed opportunity for cardiovascular protection? Med J Aust 217(3):126–128

Article  PubMed  PubMed Central  Google Scholar 

Karwi QG, Sun Q, Lopaschuk GD (2021) The contribution of cardiac fatty acid oxidation to diabetic cardiomyopathy severity. Cells 10(11)

Karwi QG, Zhang L, Wagg CS, Wang W, Ghandi M, Thai D, Yan H, Ussher JR, Oudit GY, Lopaschuk GD (2019) Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction. Cardiovasc Diabetol 18(1):1

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Zhang L, Battiprolu PK, Fukushima A, Nguyen K, Milner K, Gupta A, Altamimi T, Byrne N, Mori J, Alrob OA, Wagg C, Fillmore N, Wang S-h, Liu DM, Fu A, Lu JY, Chaves M, Motani A, Ussher JR, Reagan JD, Dyck JRB, Lopaschuk GD (2019) Malonyl CoA decarboxylase inhibition improves cardiac function post-myocardial infarction. JACC: Basic Transl Sci 4(3):385–400

Shao D, Kolwicz SC, Wang P, Roe ND, Villet O, Nishi K, Hsu Y-WA, Flint GV, Caudal A, Wang W, Regnier M, Tian R (2020) Increasing fatty acid oxidation prevents high-fat diet–induced cardiomyopathy through regulating Parkin-mediated mitophagy. Circulation 142(10):983–997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolwicz SC Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R (2012) Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 111(6):728–738

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi YS, de Mattos ABM, Shao D, Li T, Nabben M, Kim M, Wang W, Tian R, Kolwicz SC Jr (2016) Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J Mol Cell Cardiol 100:64–71

Article  CAS  PubMed  PubMed Central  Google Scholar 

Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104(24):2923–2931

Article  CAS  PubMed  Google Scholar 

Wiles JR, Leslie N, Knilans TK, Akinbi H (2014) Prolonged QTc interval in association with medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatrics 133(6):e1781–1786

Article  PubMed  PubMed Central  Google Scholar 

Marci M, Ajovalasit P (2009) Medium-chain Acyl-CoA dehydrogenase deficiency in an infant with dilated cardiomyopathy. Cardiol Res Pract 2009:281389

Article  PubMed  PubMed Central  Google Scholar 

Lin RCY, Weeks KL, Gao X-M, Williams RBH, Bernardo BC, Kiriazis H, Matthews VB, Woodcock EA, Bouwman R, Mollica JP, Speirs HJ, Dawes IW, Daly RJ, Shioi T, Izumo S, Febbraio MA, Du X-J, McMullen JR (2010) PI3K(p110a) protects against myocardial infarction-induced heart failure/ Identification of PI3K-regulated miRNAs and mRNAs. Arterioscler Thromb Vasc Biol 30:724–732

Article  CAS  PubMed  Google Scholar 

Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, Tham YK, Sapra G, Qin C, Cemerlang N, Boey EJ, Jandeleit-Dahm K, Du XJ, McMullen JR (2012) Enhanced phosphoinositide 3-kinase(p110alpha) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia 55(12):3369–3381

Article  CAS  PubMed  Google Scholar 

Saifudeen I, Subhadra L, Konnottil R, Nair RR (2017) Metabolic modulation by medium-chain triglycerides reduces oxidative stress and ameliorates CD36-mediated cardiac remodeling in spontaneously hypertensive rat in the initial and established stages of hypertrophy. J Card Fail 23(3):240–251

Article  CAS  PubMed  Google Scholar 

Ismael S, Nair RR (2021) Reactivation of fatty acid oxidation by medium chain fatty acid prevents myocyte hypertrophy in H9c2 cell line. Mol Cell Biochem 476(1):483–491

Article  CAS  PubMed  Google Scholar 

Bernardo BC, Weeks KL, Pongsukwechkul T, Gao X, Kiriazis H, Cemerlang N, Boey EJ, Tham YK, Johnson CJ, Qian H, Du XJ, Gregorevic P, McMullen JR (2018) Gene delivery of medium chain acyl-coenzyme A dehydrogenase (MCAD) induces physiological cardiac hypertrophy and protects against pathological remodelling. Clin Sci 132:381–397

Article  CAS  Google Scholar 

Ho KL, Karwi QG, Connolly D, Pherwani S, Ketema EB, Ussher JR, Lopaschuk GD (2022) Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia 65(3):411–423

Article  PubMed  Google Scholar 

Li W, Yao M, Wang R, Shi Y, Hou L, Hou Z, Lian K, Zhang N, Wang Y, Li W, Wang W, Jiang L (2018) Profile of cardiac lipid metabolism in STZ-induced diabetic mice. Lipids Health Dis 17(1):231

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernardo BC, Yildiz GS, Kiriazis H, Harmawan CA, Tai CMK, Ritchie RH, McMullen JR (2022) In vivo inhibition of miR-34a modestly limits cardiac enlargement and fibrosis in a mouse model with established type 1 diabetes-induced cardiomyopathy, but does not improve diastolic function. Cells 11(19):3117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lother A, Bondareva O, Saadatmand AR, Pollmeier L, Hardtner C, Hilgendorf I, Weichenhan D, Eckstein V, Plass C, Bode C, Backs J, Hein L, Gilsbach R (2021) Diabetes changes gene expression but not DNA methylation in cardiac cells. J Mol Cell Cardiol 151:74–87

Article  CAS  PubMed  Google Scholar 

Xi Y, Chen D, Dong Z, Lam H, He J, Du K, Chen C, Guo J, Xiao J (2022) RNA sequencing of cardiac in a rat model uncovers potential target LncRNA of diabetic cardiomyopathy. Front Genet 13:848364

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira R, Guerra G, Padrao AI, Melo T, Vitorino R, Duarte JA, Remiao F, Domingues P, Amado F, Domingues MR (2013) Lipidomic characterization of streptozotocin-induced heart mitochondrial dysfunction. Mitochondrion 13(6):762–771

Article  CAS  PubMed  Google Scholar 

Wang Y, Mohsen AW, Mihalik SJ, Goetzman ES, Vockley J (2010) Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. J Biol Chem 285(39):29834–29841

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng J, Li D (2004) Expression and purification of His-tagged rat mitochondrial medium-chain acyl-CoA dehydrogenase wild-type and Arg256 mutant proteins. Protein Expr Purif 37(2):472–478

Article  CAS  PubMed  Google Scholar 

Bross P, Jensen TG, Andresen BS, Kjeldsen M, Nandy A, Kølvraa S, Ghisla S, Rasched I, Bolund L, Gregersen N (1994) Characterization of wild-type human medium-chain acyl-CoA dehydrogenase (MCAD) and mutant enzymes present in MCAD-deficient patients by two-dimensional gel electrophoresis: evidence for post-translational modification of the enzyme. Biochem Med Metab Biol 52(1):36–44

Article  CAS  PubMed  Google Scholar 

Course MM, Scott AI, Schoor C, Hsieh CH, Papakyrikos AM, Winter D, Cowan TM, Wang X (2018) Phosphorylation of MCAD selectively rescues PINK1 deficiencies in behavior and metabolism. Mol Biol Cell 29(10):1219–1227

Article  PubMed  PubMed Central  Google Scholar 

Rennison JH, McElfresh TA, Okere IC, Patel HV, Foster AB, Patel KK, Stoll MS, Minkler PE, Fujioka H, Hoit BD, Young ME, Hoppel CL, Chandler MP (2008) Enhanced acyl-CoA dehydrogenase activity is associated with improved mitochondrial and contractile function in heart failure. Cardiovasc Res 79(2):331–340

Article  CAS  PubMed  Google Scholar 

Zhong P, Peng J, Liu T, Ding HS (2022) AAV9-mediated cardiac CNTF overexpression exacerbated adverse cardiac remodeling in streptozotocin-induced type 1 diabetic models. Cardiovasc Toxicol 22(1):88–96

Article  CAS  PubMed  Google Scholar 

Meloni M, Descamps B, Caporali A, Zentilin L, Floris I, Giacca M, Emanueli C (2012) Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes 61(1):229–240

Article  CAS  Google Scholar 

Katare R, Caporali A, Zentilin L, Avolio E, Sala-Newby G, Oikawa A, Cesselli D, Beltrami AP, Giacca M, Emanueli C, Madeddu P (2011) Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 108(10):1238–1251

Article  CAS  PubMed  Google Scholar 

Tate M, Perera N, Prakoso D, Willis AM, Deo M, Oseghale O, Qian H, Donner DG, Kiriazis H, De Blasio MJ, Gregorevic P, Ritchie RH (2021) Bone morphogenetic protein 7 gene delivery improves cardiac structure and function in

留言 (0)

沒有登入
gif