Altered expression of Sialyl Lewis X in experimental models of Parkinson’s disease

Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

Article  CAS  PubMed  Google Scholar 

Videira PAQ, Castro-Caldas M (2018) Linking Glycation and glycosylation with inflammation and mitochondrial dysfunction in Parkinson’s disease. Front Neurosci 12:381. https://doi.org/10.3389/fnins.2018.00381

Article  PubMed  PubMed Central  Google Scholar 

Kannarkat GT, Boss JM, Tansey MG (2013) The role of innate and adaptive immunity in Parkinson’s disease. J Parkinsons Dis 3:493–514. https://doi.org/10.3233/JPD-130250

Article  PubMed  PubMed Central  Google Scholar 

Rosa AI, Duarte-Silva S, Silva-Fernandes A, Nunes MJ, Carvalho AN, Rodrigues E, Gama MJ, Rodrigues CMP, Maciel P, Castro-Caldas M (2018) Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson’s disease. Mol Neurobiol 55:9139–9155. https://doi.org/10.1007/s12035-018-1062-4

Article  CAS  PubMed  Google Scholar 

Mendes MO, Rosa AI, Carvalho AN, Nunes MJ, Dionisio P, Rodrigues E, Costa D, Duarte-Silva S, Maciel P, Rodrigues CMP et al (2019) Neurotoxic effects of MPTP on mouse cerebral cortex: modulation of neuroinflammation as a neuroprotective strategy. Mol Cell Neurosci 96:1–9. https://doi.org/10.1016/j.mcn.2019.01.003

Article  CAS  PubMed  Google Scholar 

Linnartz-Gerlach B, Mathews M, Neumann H (2014) Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neurosci 275:113–124. https://doi.org/10.1016/j.neuroscience.2014.05.061

Article  CAS  Google Scholar 

Cho BG, Veillon L, Mechref Y (2019) N-Glycan profile of cerebrospinal fluids from Alzheimer’s disease patients using liquid chromatography with mass spectrometry. J Proteome Res 18:3770–3779. https://doi.org/10.1021/acs.jproteome.9b00504

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costa J, Streich L, Pinto S, Pronto-Laborinho A, Nimtz M, Conradt HS, de Carvalho M (2019) Exploring cerebrospinal fluid IgG N-glycosylation as potential biomarker for amyotrophic lateral sclerosis. Mol Neurobiol 56:5729–5739. https://doi.org/10.1007/s12035-019-1482-9

Article  CAS  PubMed  Google Scholar 

Schneider JS, Singh G (2022) Altered expression of glycobiology-related genes in Parkinson’s disease brain. Front Mol Neurosci 15:1078854. https://doi.org/10.3389/fnmol.2022.1078854

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilkinson H, Thomsson KA, Rebelo AL, Hilliard M, Pandit A, Rudd PM, Karlsson NG, Saldova R (2021) The O-glycome of human nigrostriatal tissue and its alteration in Parkinson’s disease. J Proteome Res 20:3913–3924. https://doi.org/10.1021/acs.jproteome.1c00219

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin F, Wang F (2020) The physiological and pathological roles and applications of Sialyl Lewis X, a common carbohydrate ligand of the three selectins. Glycoconj J 37:277–291. https://doi.org/10.1007/s10719-020-09912-4

Article  CAS  PubMed  Google Scholar 

Mondal N, Dykstra B, Lee J, Ashline DJ, Reinhold VN, Rossi DJ, Sackstein R (2018) Distinct human alpha(1,3)-fucosyltransferases drive Lewis-X/Sialyl Lewis-X assembly in human cells. J Biol Chem 293:7300–7314. https://doi.org/10.1074/jbc.RA117.000775

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sperandio M (2006) Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J 273:4377–4389. https://doi.org/10.1111/j.1742-4658.2006.05437.x

Article  CAS  PubMed  Google Scholar 

Silva Z, Tong Z, Cabral MG, Martins C, Castro R, Reis C, Trindade H, Konstantopoulos K, Videira PA (2011) Sialyl LewisX-dependent binding of human monocyte-derived dendritic cells to selectins. Biochem Biophys Res Commun 409:459–464. https://doi.org/10.1016/j.bbrc.2011.05.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishihara S, Iwasaki H, Nakajima K, Togayachi A, Ikehara Y, Kudo T, Kushi Y, Furuya A, Shitara K, Narimatsu H (2003) Alpha 1,3-fucosyltransferase IX (Fut9) determines Lewis X expression in brain. Glycobiol 13:445–455. https://doi.org/10.1093/glycob/cwg048

Article  CAS  Google Scholar 

Groux-Degroote S, Cavdarli S, Uchimura K, Allain F, Delannoy P (2020) Glycosylation changes in inflammatory diseases. Adv Protein Chem Struct Biol 119:111–156. https://doi.org/10.1016/bs.apcsb.2019.08.008

Article  CAS  PubMed  Google Scholar 

Carrascal MA, Silva M, Ferreira JA, Azevedo R, Ferreira D, Silva AMN, Ligeiro D, Santos LL, Sackstein R, Videira PA (2018) A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer. Biochim Biophys Acta 1862:2069–2080. https://doi.org/10.1016/j.bbagen.2018.05.013

Article  CAS  Google Scholar 

Hidalgo A, Peired AJ, Wild M, Vestweber D, Frenette PS (2007) Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26:477–489. https://doi.org/10.1016/j.immuni.2007.03.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jassam SA, Maherally Z, Ashkan K, Pilkington GJ, Fillmore HL (2019) Fucosyltransferase 4 and 7 mediates adhesion of non-small cell lung cancer cells to brain-derived endothelial cells and results in modification of the blood-brain-barrier: in vitro investigation of CD15 and CD15s in lung-to-brain metastasis. J Neurooncol 143:405–415. https://doi.org/10.1007/s11060-019-03188-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satoh J, Kim SU (1994) Differential expression of Lewis(x) and Sialyl-Lewis(x) antigens in fetal human neural cells in culture. J Neurosci Res 37:466–474. https://doi.org/10.1002/jnr.490370406

Article  CAS  PubMed  Google Scholar 

Parry S, Ledger V, Tissot B, Haslam SM, Scott J, Morris HR, Dell A (2007) Integrated mass spectrometric strategy for characterizing the glycans from glycosphingolipids and glycoproteins: direct identification of Sialyl Le(x) in mice. Glycobiol 17:646–654. https://doi.org/10.1093/glycob/cwm024

Article  CAS  Google Scholar 

Castro-Caldas M, Neves Carvalho A, Peixeiro I, Rodrigues E, Lechner MC, Gama MJ (2009) GSTpi expression in MPTP-induced dopaminergic neurodegeneration of C57BL/6 mouse midbrain and striatum. Journal of molecular neuroscience : MN 38:114–127. https://doi.org/10.1007/s12031-008-9141-z

Article  CAS  PubMed  Google Scholar 

Tobon-Velasco JC, Cuevas E, Torres-Ramos MA (2014) Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord: Drug Targets 13:1615–1626. https://doi.org/10.2174/1871527313666140806144831

Article  CAS  PubMed  Google Scholar 

Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317:1–5. https://doi.org/10.1016/j.jns.2012.02.018

Article  CAS  PubMed  Google Scholar 

Teismann P, Sathe K, Bierhaus A, Leng L, Martin HL, Bucala R, Weigle B, Nawroth PP, Schulz JB (2012) Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 33:2478–2490. https://doi.org/10.1016/j.neurobiolaging.2011.12.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goncalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC (2018) Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front Neurosci 12:1035. https://doi.org/10.3389/fnins.2018.01035

Article  PubMed  Google Scholar 

Nunes MJ, Carvalho AN, Sa-Lemos C, Colaco M, Cervenka I, Ciraci V, Santos SG, Ribeiro MM, Castanheira M, Jannig PR et al (2023) Sustained PGC-1alpha2 or PGC-1alpha3 expression induces astrocyte dysfunction and degeneration. Eur J Cell Biol 103:151377. https://doi.org/10.1016/j.ejcb.2023.151377

Article  CAS  PubMed  Google Scholar 

Popiolek-Barczyk K, Ciechanowska A, Ciapala K, Pawlik K, Oggioni M, Mercurio D, De Simoni MG, Mika J (2020) The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Mol Cell Probes 54:101671. https://doi.org/10.1016/j.mcp.2020.101671

Article  CAS  PubMed  Google Scholar 

Zhang X, Zhou JY, Chin MH, Schepmoes AA, Petyuk VA, Weitz KK, Petritis BO, Monroe ME, Camp DG, Wood SA et al (2010) Region-specific protein abundance changes in the brain of MPTP-induced Parkinson’s disease mouse model. J Proteome Res 9:1496–1509. https://doi.org/10.1021/pr901024z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brito C, Kandzia S, Graca I, Conradt HS, Costa J (2008) Human fucosyltransferase IX: specificity towards N-linked glycoproteins and relevance of the cytoplasmic domain in intra-Golgi localization. Biochimie 90:1279–1290. https://doi.org/10.1016/j.biochi.2008.03.002

Article  CAS  PubMed  Google Scholar 

Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, Carvalho AN, Outeiro TF, Rodrigues CMP, Gama MJ et al (2017) Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol 295:77–87. https://doi.org/10.1016/j.expneurol.2017.05.009

Article  CAS  PubMed 

留言 (0)

沒有登入
gif