IL-23 contributes to Particulate Matter induced allergic asthma in the early life of mice and promotes asthma susceptibility

Takizawa H (2015) Impacts of particulate air pollution on asthma: current understanding and future perspectives. Recent Pat Inflamm Allergy Drug Discov 9:128–135. https://doi.org/10.2174/1872213x09666150623110714

Article  CAS  PubMed  Google Scholar 

Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH (2022) Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 31. https://doi.org/10.1183/16000617.0112-2021

Jacquemin B, Kauffmann F, Pin I, Le Moual N, Bousquet J, Gormand F, Just J, Nadif R, Pison C, Vervloet D et al (2012) Air pollution and asthma control in the epidemiological study on the genetics and environment of asthma. J Epidemiol Community Health 66:796–802. https://doi.org/10.1136/jech.2010.130229

Article  PubMed  Google Scholar 

Brandt EB, Bolcas PE, Ruff BP, Khurana Hershey GK (2020) IL33 contributes to diesel pollution-mediated increase in experimental asthma severity. Allergy 75:2254–2266. https://doi.org/10.1111/all.14181

Article  CAS  PubMed  Google Scholar 

Brauer M, Hoek G, Smit HA, de Jongste JC, Gerritsen J, Postma DS, Kerkhof M, Brunekreef B (2007) Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J 29:879–888. https://doi.org/10.1183/09031936.00083406

Article  CAS  PubMed  Google Scholar 

McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, Kunzli N, Gauderman J, Avol E, Thomas D et al (2006) Traffic, susceptibility, and childhood asthma. Environ Health Perspect 114:766–772. https://doi.org/10.1289/ehp.8594

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung CR, Chen WT, Tang YH, Hwang BF (2019) Fine particulate matter exposure during pregnancy and infancy and incident asthma. J Allergy Clin Immunol 143(2254–2262):e2255. https://doi.org/10.1016/j.jaci.2019.03.024

Article  CAS  Google Scholar 

Brandt EB, Biagini Myers JM, Acciani TH, Ryan PH, Sivaprasad U, Ruff B, LeMasters GK, Bernstein DI, Lockey JE, LeCras TD et al (2015) Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility. J Allergy Clin Immunol 136(295–303):e297. https://doi.org/10.1016/j.jaci.2014.11.043

Article  CAS  Google Scholar 

Sewell GW, Kaser A (2022) Interleukin-23 in the pathogenesis of inflammatory bowel disease and implications for therapeutic intervention. J Crohns Colitis 16: ii3-ii19. https://doi.org/10.1093/ecco-jcc/jjac034

Chan TC, Hawkes JE, Krueger JG (2018) Interleukin 23 in the skin: role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment. Ther Adv Chronic Dis 9:111–119. https://doi.org/10.1177/2040622318759282

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, Guggino G (2021) Role of the IL-23/IL-17 pathway in rheumatic diseases: an overview. Front Immunol 12:637829. https://doi.org/10.3389/fimmu.2021.637829

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, Saito Y, Hatano M, Tokuhisa T, Iwakura Y et al (2008) IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med 178:1023–1032. https://doi.org/10.1164/rccm.200801-086OC

Article  CAS  PubMed  Google Scholar 

Alyasin S, Amin R, Fazel A, Karimi MH, Nabavizadeh SH, Esmaeilzadeh H, Babaei M (2017) IL-23 Gene and protein expression in childhood asthma. Iran J Immunol 14:73–80

PubMed  Google Scholar 

Zhang X, Chang Li X, Xiao X, Sun R, Tian Z, Wei H (2013) CD4(+)CD62L(+) central memory T cells can be converted to Foxp3(+) T cells. PLoS ONE 8:e77322. https://doi.org/10.1371/journal.pone.0077322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sallusto F, Lanzavecchia A (2001) Exploring pathways for memory T cell generation. J Clin Invest 108:805–806. https://doi.org/10.1172/JCI14005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haines CJ, Chen Y, Blumenschein WM, Jain R, Chang C, Joyce-Shaikh B, Porth K, Boniface K, Mattson J, Basham B et al (2013) Autoimmune memory T helper 17 cell function and expansion are dependent on interleukin-23. Cell Rep 3:1378–1388. https://doi.org/10.1016/j.celrep.2013.03.035

Article  CAS  PubMed  Google Scholar 

Lee HS, Park HW (2022) IL-23 plays a significant role in the augmentation of particulate matter-mediated allergic airway inflammation. J Cell Mol Med 26:4506–4519. https://doi.org/10.1111/jcmm.17475

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakajima Y, Chamoto K, Oura T, Honjo T (2021) Critical role of the CD44(low)CD62L(low) CD8(+) T cell subset in restoring antitumor immunity in aged mice. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/pnas.2103730118

Maroof A (2001) Generation of murine bone-marrow-derived dendritic cells. Methods Mol Med 64:191–198. https://doi.org/10.1385/1-59259-150-7:191

Article  CAS  PubMed  Google Scholar 

Basaraba RJ (2008) Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis (Edinb) 88(Suppl 1):S35-47. https://doi.org/10.1016/S1472-9792(08)70035-0

Article  PubMed  Google Scholar 

Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M et al (2016) Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 126:3279–3295. https://doi.org/10.1172/JCI85664

Article  PubMed  PubMed Central  Google Scholar 

Bosnjak B, Kazemi S, Altenburger LM, Mokrovic G, Epstein MM (2019) Th2-T(RMs) maintain life-long allergic memory in experimental asthma in mice. Front Immunol 10:840. https://doi.org/10.3389/fimmu.2019.00840

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161. https://doi.org/10.1146/annurev-immunol-032712-095954

Article  CAS  PubMed  Google Scholar 

Achakulwisut P, Brauer M, Hystad P, Anenberg SC (2019) Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO(2) pollution: estimates from global datasets. Lancet Planet Health 3:e166–e178. https://doi.org/10.1016/S2542-5196(19)30046-4

Article  PubMed  Google Scholar 

Fuertes E, Heinrich J (2015) The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization. Allergy 70:1350–1351. https://doi.org/10.1111/all.12611

Article  CAS  PubMed  Google Scholar 

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

Article  PubMed  PubMed Central  Google Scholar 

Ghio AJ (2008) Mechanism of asthmatic exacerbation by ambient air pollution particles. Expert Rev Respir Med 2:109–118. https://doi.org/10.1586/17476348.2.1.109

Article  CAS  PubMed  Google Scholar 

Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B (2016) Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol 90:1541–1553. https://doi.org/10.1007/s00204-016-1736-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T (2018) Insights in particulate matter-induced allergic airway inflammation: focus on the epithelium. Clin Exp Allergy 48:773–786. https://doi.org/10.1111/cea.13178

Article  PubMed  Google Scholar 

Acciani TH, Brandt EB, Khurana Hershey GK, Le Cras TD (2013) Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clin Exp Allergy 43:1406–1418. https://doi.org/10.1111/cea.12200

Article  CAS  PubMed  Google Scholar 

Sallusto F, Lanzavecchia A, Araki K, Ahmed R (2010) From vaccines to memory and back. Immunity 33:451–463. https://doi.org/10.1016/j.immuni.2010.10.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lloyd CM, Hessel EM (2010) Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol 10:838–848. https://doi.org/10.1038/nri2870

Article  CAS  PubMed  Google Scholar 

Wang Q, Du J, Zhu J, Yang X, Zhou B (2015) Thymic stromal lymphopoietin signaling in CD4(+) T cells is required for TH2 memory. J Allergy Clin Immunol 135(781–791):e783. https://doi.org/10.1016/j.jaci.2014.09.015

Article  CAS  Google Scholar 

Kitajima M, Kubo M, Ziegler SF, Suzuki H (2020) Critical role of TSLP receptor on CD4 T cells for exacerbation of skin inflammation. J Immunol 205:27–35. https://doi.org/10.4049/jimmunol.1900758

Article  CAS  PubMed  Google Scholar 

Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, Saloga J (2010) Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 129:437–445. https://doi.org/10.1111/j.1365-2567.2009.03199.x

Article  CAS 

留言 (0)

沒有登入
gif