Sphingolipids: drivers of cardiac fibrosis and atrial fibrillation

Mcilwain H (1964) A treatise on the chemical constitution of the brain. Isis 55

Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH et al (2015) Essentials of Glycobiology. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (eds) Essentials of Glycobiology Cold Spring Harbor Laboratory Press Copyright 2015–2017 by The Consortium of Glycobiology Editors, La Jolla, California. All rights reserved., Cold Spring Harbor (NY)

Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150. https://doi.org/10.1038/nrm2329

Article  PubMed  CAS  Google Scholar 

Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354. https://doi.org/10.1146/annurev.biochem.73.011303.073731

Article  PubMed  CAS  Google Scholar 

Rivera R, Chun J (2008) Biological effects of lysophospholipids. Rev Physiol Biochem Pharmacol 160:25–46. https://doi.org/10.1007/112_0507

Article  PubMed  CAS  Google Scholar 

Li H, Song X, Liang Y, Bai X, Liu-Huo WS, Tang C, Chen W, Zhao L (2022) Global, regional, and national burden of Disease study of atrial fibrillation/flutter, 1990–2019: results from a global burden of Disease study, 2019. BMC Public Health 22:2015. https://doi.org/10.1186/s12889-022-14403-2

Article  PubMed  PubMed Central  Google Scholar 

Essien UR, Kornej J (2021) Social determinants of atrial fibrillation. 18:763–773. https://doi.org/10.1038/s41569-021-00561-0

Lippi G, Sanchis-Gomar F (2021) Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge. 16:217–221. https://doi.org/10.1177/1747493019897870

Pellman J, Sheikh F (2015) Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol 5:649–665. https://doi.org/10.1002/cphy.c140047

Article  PubMed  PubMed Central  Google Scholar 

Woods CE, Olgin J (2014) Atrial fibrillation therapy now and in the future: Drugs, biologicals, and ablation. Circul Res 114:1532–1546. https://doi.org/10.1161/circresaha.114.302362

Article  CAS  Google Scholar 

Ding Y, Wang Y, Zhang W, Jia Q, Wang X, Li Y, Lv S, Zhang J (2020) Roles of biomarkers in myocardial fibrosis. Aging and Disease 11:1157–1174. https://doi.org/10.14336/ad.2020.0604

Article  PubMed  PubMed Central  Google Scholar 

Lee TC, Ou MC, Shinozaki K, Malone B, Snyder F (1996) Biosynthesis of N-acetylsphingosine by platelet-activating factor: sphingosine CoA-independent transacetylase in HL-60 cels. J Biol Chem 271:209–217. https://doi.org/10.1074/jbc.271.1.209

Article  PubMed  CAS  Google Scholar 

Castro BM, Prieto M, Silva LC (2014) Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 54:53–67. https://doi.org/10.1016/j.plipres.2014.01.004

Article  PubMed  CAS  Google Scholar 

Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr., Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W et al (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861. https://doi.org/10.1194/jlr.E400004-JLR200

Article  PubMed  CAS  Google Scholar 

Al Sazzad MA, Yasuda T, Murata M, Slotte JP (2017) The Long-Chain Sphingoid Base of Ceramides determines their propensity for lateral segregation. Biophys J 112:976–983. https://doi.org/10.1016/j.bpj.2017.01.016

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862. https://doi.org/10.1074/jbc.R111.254359

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23. https://doi.org/10.1007/978-1-4419-6741-1_1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nganga R, Oleinik N, Ogretmen B (2018) Mechanisms of Ceramide-Dependent Cancer Cell Death. Adv Cancer Res 140:1–25. https://doi.org/10.1016/bs.acr.2018.04.007

Article  PubMed  CAS  Google Scholar 

Cogolludo A, Villamor E (2019) Ceramide and Regulation of Vascular Tone. 20. https://doi.org/10.3390/ijms20020411

Li S, Xie T, Liu P, Wang L, Gong X (2021) Structural insights into the assembly and substrate selectivity of human SPT-ORMDL3 complex. 28:249–257. https://doi.org/10.1038/s41594-020-00553-7

Wang Y, Niu Y, Zhang Z, Gable K, Gupta SD, Somashekarappa N, Han G, Zhao H, Myasnikov AG, Kalathur RC et al (2021) Structural insights into the regulation of human serine palmitoyltransferase complexes. 28:240–248. https://doi.org/10.1038/s41594-020-00551-9

Tidhar R, Futerman AH (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta 1833:2511–2518. https://doi.org/10.1016/j.bbamcr.2013.04.010

Gao Y, He X, Ding F, Zhang Y (2016) Recent progress in Chemical syntheses of Sphingosines and Phytosphingosines. Synthesis 48:4017–4037

Article  CAS  Google Scholar 

Park KH, Ye ZW, Zhang J, Hammad SM (2019) 3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. 9:1138. https://doi.org/10.1038/s41598-018-37946-0

Andreas S, Thomas K, Athanassios G, Konrad S (1995) Synthesis of phosphonate analogues of sphinganine-1-phosphate and sphingosine-1-phosphate. Tetrahedron 51:11207–11218. https://doi.org/10.1016/0040-4020(95)00688-5

Article  Google Scholar 

Rotem T, Anthony HF (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochimica et Biophysica Acta (BBA). Mol Cell Res 1833:2511–2518. https://doi.org/10.1016/j.bbamcr.2013.04.010

Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62:347–356. https://doi.org/10.1002/iub.319

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do lasses (longevity assurance genes) become CerS (ceramide synthases)? Insights into the regulation of ceramide synthesis. J Biol Chem 281:25001–25005. https://doi.org/10.1074/jbc.R600010200

Article  PubMed  CAS  Google Scholar 

Pewzner-Jung Y, Brenner O, Braun S, Laviad EL, Ben-Dor S, Feldmesser E, Horn-Saban S, Amann-Zalcenstein D, Raanan C, Berkutzki T et al (2010) A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J Biol Chem 285:10911–10923. https://doi.org/10.1074/jbc.M109.077610

Article  PubMed  PubMed Central  CAS  Google Scholar 

Choi RH, Tatum SM, Symons JD, Summers SA (2021) Ceramides and other sphingolipids as drivers of Cardiovascular Disease. 18:701–711. https://doi.org/10.1038/s41569-021-00536-1

Merrill AH Jr (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 277:25843–25846. https://doi.org/10.1074/jbc.R200009200

Article  PubMed  CAS  Google Scholar 

D’Angelo G, Capasso S, Sticco L, Russo D (2013) Glycosphingolipids: synthesis and functions. FEBS J 280:6338–6353. https://doi.org/10.1111/febs.12559

Schulze H, Sandhoff K (2011) Lysosomal lipid storage Diseases. Cold Spring Harbor perspectives in biology 3. https://doi.org/10.1101/cshperspect.a004804

Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20:1010–1018. https://doi.org/10.1016/j.cellsig.2007.12.006

Merrill HM Jr (2004) Sphingolipid biosynthesis. Encyclopedia Biol Chem 76–81. https://doi.org/10.1016/B0-12-443710-9/00725-0

Hait NC, Maiti A (2017) The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer. 4806541. https://doi.org/10.1155/2017/4806541

Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809. https://doi.org/10.1038/nature02188

Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23:33–44. https://doi.org/10.1038/sj.emboj.7600034

Article  PubMed  CAS  Google Scholar 

Cabukusta B, Kol M, Kneller L, Hilderink A, Bickert A, Mina JG, Korneev S, Holthuis JC (2017) ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci Rep 7:41290. https://doi.org/10.1038/srep41290

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vacaru AM, Tafesse FG, Ternes P, Kondylis V, Hermansson M, Brouwers JF, Somerharju P, Rabouille C, Holthuis JC (2009) Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J Cell Biol 185:1013–1027. https://doi.org/10.1083/jcb.200903152

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Sci (New York NY) 325:1254–1257. https://doi.org/10.1126/science.1176709

Article  CAS  Google Scholar 

Strub GM, Paillard M, Liang J, Gomez L, Allegood JC, Hait NC, Maceyka M, Price MM, Chen Q, Simpson DC et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 25:600–612. https://doi.org/10.1096/fj.10-167502

Article  PubMed  CAS  Google Scholar 

Sugiura M, Kono K, Liu H, Shimizugawa T, Minekura H, Spiegel S, Kohama T (2002) Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J Biol Chem 277:23294–23300. https://doi.org/10.1074/jbc.M201535200

Article  PubMed  CAS  Google Scholar 

Kolter T, Proia RL, Sandhoff K (2002) Combinatorial ganglioside biosynthesis. J Biol Chem 277:25859–25862. https://doi.org/10.1074/jbc.R200001200

Article  PubMed  CAS  Google Scholar 

Zhang T, de Waard AA, Wuhrer M, Spaapen RM (2019) The role of glycosphingolipids in Immune Cell functions. Front Immunol 10:90. https://doi.org/10.3389/fimmu.2019.00090

Article  PubMed  PubMed Central  CAS  Google Scholar 

Allende ML, Proia RL (2014) Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 31:613–622. https://doi.org/10.1007/s10719-014-9563-5

留言 (0)

沒有登入
gif