Andersson MX, Larsson KE, Tjellström H, Liljenberg C, Sandelius AS. Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem. 2005;280:27578–86.
Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J, Block MA. Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol. 2004;167:863–74.
Article CAS PubMed PubMed Central Google Scholar
Abida H, Dolch L-J, Meï C, Villanova V, Conte M, Block MA, et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 2015;167:118–36.
Article CAS PubMed Google Scholar
Mühlroth A, Winge P, El Assimi A, Jouhet J, Maréchal E, Hohmann-Marriott MF, et al. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga. Plant Physiol. 2017;175:1543–59.
Article PubMed PubMed Central Google Scholar
Riekhof WR, Andre C, Benning C. Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria. Arch Biochem Biophys. 2005;441:96–105.
Article CAS PubMed Google Scholar
Senik SV, Maloshenok LG, Kotlova ER, Shavarda AL, Moiseenko KV, Bruskin SA, et al. Diacylglyceryltrimethylhomoserine content and gene expression changes triggered by phosphate deprivation in the mycelium of the basidiomycete Flammulina velutipes. Phytochemistry. 2015;117:34–42.
Article CAS PubMed Google Scholar
Dembitsky VM. Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res. 1996;35:1–51.
Article CAS PubMed Google Scholar
Kato M, Sakai M, Adachi K, Ikemoto H, Sano H. Distribution of betaine lipids in marine algae. Phytochemistry. 1996;42:1341–5.
Sato N. Betaine lipids Bot Mag Tokyo. 1992;105:185–97.
Cañavate JP, Armada I, Ríos JL, Hachero-Cruzado I. Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae. Phytochemistry. 2016;124:68–78.
Eichenberger W, Araki S, Müller DG. Betaine lipids and phospholipids in brown algae. Phytochemistry. 1993;34:1323–33.
Künzler K, Eichenberger W, Radunz A. Intracellular localization of two betaine lipids by cell fractionation and immunomicroscopy. Z Naturforsch C J Biosci. 1997;52:487–95.
Moore TS, Du Z, Chen Z. Membrane lipid biosynthesis in Chlamydomonas reinhardtii. In vitro biosynthesis of diacylglyceryltrimethylhomoserine. Plant Physiol. 2001;125:423–9.
Riekhof WR, Sears BB, Benning C. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell. 2005;4:242–52.
Article CAS PubMed PubMed Central Google Scholar
Botella C, Jouhet J, Block MA. Importance of phosphatidylcholine on the chloroplast surface. Prog Lipid Res. 2017;65:12–23.
Article CAS PubMed Google Scholar
Karki N, Johnson BS, Bates PD. Metabolically distinct pools of phosphatidylcholine are involved in trafficking of fatty acids out of and into the chloroplast for membrane production. Plant Cell. 2019;31:2768–88.
CAS PubMed PubMed Central Google Scholar
Flori S, Jouneau P-H, Finazzi G, Maréchal E, Falconet D. Ultrastructure of the periplastidial compartment of the diatom phaeodactylum tricornutum. Protist. 2016;167:254–67.
Künzler K, Eichenberger W. Betaine lipids and zwitterionic phospholipids in plants and fungi. Phytochemistry. 1997;46:883–92.
Makewicz A, Gribi C, Eichenberger W. Lipids of Ectocarpus fasciculatus (Phaeophyceae). Incorporation of [l-14C]Oleate and the role of TAG and MGDG in lipid metabolism. Plant Cell Physiol. 1997;38:952–62.
Vaskovsky VE, Khotimchenko SV, Boolugh EM. Distribution of diacylglycerotrimethylhomoserine and phosphatidylcholine in mushrooms. Phytochemistry. 1998;47:755–60.
Rozentsvet OA. Comparative examination of distribution of phospholipids and a betaine lipid DGTS in tropical fern species. Biochem Syst Ecol. 2004;32:303–11.
Chen THH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol. 2002;5:250–7.
Article CAS PubMed Google Scholar
Sato N. Lipids in Cryptomonas CR-1. II. Biosynthesis of betaine lipids and galactolipids. Plant Cell Physiol. 1991;32:845–51.
Naoki Sato, Norio Murata. Transition of lipid phase in aqueous dispersions of diacylglyceryltrimethylhomoserine. Biochim Biophys Acta. 1991;1082:108–11.
Drazenovic J, Wang H, Roth K, Zhang J, Ahmed S, Chen Y, et al. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles. Biochim Biophys Acta. 2015;1848:532–43.
Wiener MC, White SH. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution. Biophys J. 1991;59:162–73.
Bolik S, Albrieux C, Schneck E, Demé B, Jouhet J. Sulfoquinovosyldiacylglycerol and phosphatidylglycerol bilayers share biophysical properties and are good mutual substitutes in photosynthetic membranes. Biochim Biophys Acta. 2022;1864:184037.
Kanduč M, Schlaich A, de Vries AH, Jouhet J, Maréchal E, Demé B, et al. Tight cohesion between glycolipid membranes results from balanced water-headgroup interactions. Nat Commun. 2017;8:14899.
Article PubMed PubMed Central Google Scholar
Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000;1469:159–95.
Braganza LF, Worcester DL. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry. 1986;25:2591–6.
Article CAS PubMed Google Scholar
Matsuki H, Goto M, Tada K, Tamai N. Thermotropic and barotropic phase behavior of phosphatidylcholine bilayers. Int J Mol Sci. 2013;14:2282–302.
Article CAS PubMed PubMed Central Google Scholar
Lis LJ, Mcalister M, Fuller N, Rand RP, Parsegian VA. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982;37:657–65.
Article CAS PubMed PubMed Central Google Scholar
Leikin SL, Kozlov MM, Chernomordik LV, Markin VS, Chizmadzhev YA. Membrane fusion: overcoming of the hydration barrier and local restructuring. J Theor Biol. 1987;129:411–25.
Article CAS PubMed Google Scholar
Lu DR, Lee SJ, Park K. Calculation of solvation interaction energies for protein adsorption on polymer surfaces. J Biomater Sci Polym Ed. 1992;3:127–47.
Kowalik B, Schlaich A, Kanduč M, Schneck E, Netz RR. Repulsion difference between ordered and disordered membranes due to cancellation of membrane-membrane and water-mediated interactions. J Phys Chem Lett. 2017;8:2869–74.
Article CAS PubMed Google Scholar
Schneck E, Rehfeldt F, Oliveira RG, Gege C, Demé B, Tanaka M. Modulation of intermembrane interaction and bending rigidity of biomembrane models via carbohydrates investigated by specular and off-specular neutron scattering. Phys Rev E. 2008;78: 061924.
Mennicke U, Constantin D, Salditt T. Structure and interaction potentials in solid-supported lipid membranes studied by X-ray reflectivity at varied osmotic pressure. Eur Phys J E. 2006;20:221–30.
Article CAS PubMed Google Scholar
Zhang R, Tristram-Nagle S, Sun W, Headrick RL, Irving TC, Suter RM, et al. Small-angle x-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory. Biophys J. 1996;70:349–57.
Article CAS PubMed PubMed Central Google Scholar
Kučerka N, Tristram-Nagle S, Nagle JF. Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophys J. 2006;90:L83–5.
Article PubMed PubMed Central Google Scholar
Stachura SS, Malajczuk CJ, Kuprusevicius E, Mancera RL. Influence of bilayer size and number in multi-bilayer DOPC simulations at full and low hydration. Langmuir. 2019;35:2399–411.
Article CAS PubMed Google Scholar
Nagle JF. Experimentally determined tilt and bending moduli of single-component lipid bilayers. Chem Phys Lipid. 2017;205:18–24.
Schlaich A, Kowalik B, Kanduč M, Schneck E, Netz RR. Physical mechanisms of the interaction between lipid membranes in the aqueous environment. Physica A. 2015;418:105–25.
Schneck E, Sedlmeier F, Netz RR. Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proc Natl Acad Sci. 2012;109:14405–9.
Article CAS PubMed PubMed Central Google Scholar
Marčelja S, Radić N. Repulsion of interfaces due to boundary water. Chem Phys Lett. 1976;42:129–30.
Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta H. Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in nannochloropsis. Plant Physiol. 2018;177:181–93.
Comments (0)