Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot. 2011;62(15):5607–21.
Article CAS PubMed PubMed Central Google Scholar
Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, et al. Insect resistant cotton plants. Biotechnology (N Y). 1990;8(10):939–43.
Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA, Jaques Miret JA, et al. Pest categorisation of Liriomyza sativae. Efsa j. 2020;18(3): e06037.
PubMed PubMed Central Google Scholar
Oliveira JM, Araújo JL, Melo JWS, Dias-Pini NS. Melon genotypes with resistance to Liriomyza sativae Blanchard (Diptera: Agromyzidae). An Acad Bras Cienc. 2022;94(2): e20191244.
Nawaz R, Abbasi NA, Hafiz IA, Khan MF, Khalid A. Environmental variables influence the developmental stages of the citrus leafminer, infestation level and mined leaves physiological response of Kinnow mandarin. Sci Rep. 2021;11(1):7720.
Article CAS PubMed PubMed Central Google Scholar
Chang YW, Chen JY, Zheng SZ, Gao Y, Chen Y, Deng Y, et al. Revalidation of morphological characteristics and multiplex PCR for the identification of three congener invasive Liriomyza species (Diptera: Agromyzidae) in China. PeerJ. 2020;8: e10138.
Article PubMed PubMed Central Google Scholar
Xu X, Coquilleau MP, Ridland PM, Umina PA, Yang Q, Hoffmann AA. Molecular identification of leafmining flies from Australia including new Liriomyza outbreaks. J Econ Entomol. 2021;114(5):1983–90.
Article CAS PubMed Google Scholar
Yule S, Htain NN, Oo AK, Sotelo-Cardona P, Srinivasan R. Occurrence of the South American tomato leaf miner, Tuta absoluta (Meyrick) in Southern Shan, Myanmar. Insects. 2021;12(11):962.
Article PubMed PubMed Central Google Scholar
Pirtle EI, van Rooyen AR, Maino J, Weeks AR, Umina PA. A molecular method for biomonitoring of an exotic plant-pest: leafmining for environmental DNA. Mol Ecol. 2021;30(19):4913–25.
Article CAS PubMed Google Scholar
Dauphin BG, Ranocha P, Dunand C, Burlat V. Cell-wall microdomain remodeling controls crucial developmental processes. Trends Plant Sci. 2022;27(10):1033–48.
Article CAS PubMed Google Scholar
Chebli Y, Geitmann A. Cellular growth in plants requires regulation of cell wall biochemistry. Curr Opin Cell Biol. 2017;44:28–35.
Article CAS PubMed Google Scholar
Swaminathan S, Lionetti V, Zabotina OA. Plant cell wall integrity perturbations and priming for defense. Plants (Basel). 2022;11(24):3539.
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front Plant Sci. 2014;5:228.
Article PubMed PubMed Central Google Scholar
Vicré M, Lionetti V. Editorial: Plant cell wall in pathogenesis, parasitism and symbiosis, Volume II. Front Plant Sci. 2023;14:1230438.
Silva-Sanzana C, Celiz-Balboa J, Garzo E, Marcus SE, Parra-Rojas JP, Rojas B, et al. Pectin methylesterases modulate plant homogalacturonan status in defenses against the aphid Myzus persicae. Plant Cell. 2019;31(8):1913–29.
Article CAS PubMed PubMed Central Google Scholar
Gesteiro N, Butrón A, Estévez S, Santiago R. Unraveling the role of maize (Zea mays L.) cell-wall phenylpropanoids in stem-borer resistance. Phytochemistry. 2021;185:112683.
Article CAS PubMed Google Scholar
Wu HC, Huang YC, Stracovsky L, Jinn TL. Pectin methylesterase is required for guard cell function in response to heat. Plant Signal Behav. 2017;12(6): e1338227.
Article PubMed PubMed Central Google Scholar
Jia H, Wang X, Wei T, Wang M, Liu X, Hua L, et al. Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicol Environ Saf. 2021;207: 111550.
Article CAS PubMed Google Scholar
Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, et al. Toward a systems approach to understanding plant cell walls. Science. 2004;306(5705):2206–11.
Article CAS PubMed Google Scholar
Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. Front Plant Sci. 2015;6:523.
Article PubMed PubMed Central Google Scholar
Lionetti V, Fabri E, De Caroli M, Hansen AR, Willats WG, Piro G, et al. Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiol. 2017;173(3):1844–63.
Article CAS PubMed PubMed Central Google Scholar
Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3):266–77.
Article CAS PubMed Google Scholar
Anderson CT. We be jammin’: an update on pectin biosynthesis, trafficking and dynamics. J Exp Bot. 2016;67(2):495–502.
Article CAS PubMed Google Scholar
Wang T, Hong M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot. 2016;67(2):503–14.
Article CAS PubMed Google Scholar
Micheli F. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001;6(9):414–9.
Article CAS PubMed Google Scholar
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon supply and the regulation of cell wall synthesis. Mol Plant. 2018;11(1):75–94.
Wang X, Wilson L, Cosgrove DJ. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. J Exp Bot. 2020;71(9):2629–40.
Article CAS PubMed PubMed Central Google Scholar
Soujanya PL, Sekhar JC, Ratnavathi CV, Karjagi CG, Shobha E, Suby SB, et al. Induction of cell wall phenolic monomers as part of direct defense response in maize to pink stem borer (Sesamia inferens Walker) and non-insect interactions. Sci Rep. 2021;11(1):14770.
Article CAS PubMed PubMed Central Google Scholar
Chebli Y, Kaneda M, Zerzour R, Geitmann A. The cell wall of the Arabidopsis pollen tube–spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol. 2012;160(4):1940–55.
Article CAS PubMed PubMed Central Google Scholar
Bonnin E, Alvarado C, Crépeau MJ, Bouchet B, Garnier C, Jamme F, et al. Mobility of pectin methylesterase in pectin/cellulose gels is enhanced by the presence of cellulose and by its catalytic capacity. Sci Rep. 2019;9(1):12551.
Article PubMed PubMed Central Google Scholar
Huang D, Mao Y, Guo G, Ni D, Chen L. Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis). BMC Plant Biol. 2022;22(1):306.
Comments (0)