Irish A, Whitman JD, Clark EH, Marcus R, Bern C. Updated estimates and mapping for prevalence of Chagas disease among adults. United States Emerg Infect Dis. 2022;28:1313–20.
Chagas disease [Internet]. [cited 2023 Jun 19]. Available from: https://www.paho.org/en/topics/chagas-disease
Chagas disease (also known as American trypanosomiasis) [Internet]. [cited 2023 Jun 19]. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
Córdova E, Maiolo E, Corti M, Orduña T. Neurological manifestations of Chagas’ disease. Neurol Res. 2010;32:238–44.
Py MO. Neurologic manifestations of Chagas disease. Curr Neurol Neurosci Rep. 2011;11:536–42.
Carod-Artal FJ, Vargas AP, Horan TA, Nunes LGN. Chagasic cardiomyopathy is independently associated with ischemic stroke in Chagas disease. Stroke. 2005;36:965–70.
Useche Y, Pérez AR, de Meis J, Bonomo A, Savino W. Central nervous system commitment in Chagas disease. Front Immunol. 2022;13:975106.
Article CAS PubMed PubMed Central Google Scholar
Da-Mata JR, Camargos MR, Chiari E, Machado CR. Trypanosoma cruzi infection and the rat central nervous system: proliferation of parasites in astrocytes and the brain reaction to parasitism. Brain Res Bull. 2000;53:153–62.
Article CAS PubMed Google Scholar
Silva LS, Pinheiro AS, Teixeira DE, Silva-Aguiar RP, Peruchetti DB, Scharfstein J, et al. Kinins released by erythrocytic stages of Plasmodium falciparum enhance adhesion of infected erythrocytes to endothelial cells and increase blood brain barrier permeability via activation of bradykinin receptors. Front Med (Lausanne) [Internet]. 2019;6. Available from: https://doi.org/10.3389/fmed.2019.00075
Caradonna K, PereiraPerrin M. Preferential brain homing following intranasal administration of Trypanosoma cruzi. Infect Immun. 2009;77:1349–56.
Article CAS PubMed PubMed Central Google Scholar
Simioli F, Sánchez-Cunto M, Velázquez E, Lloveras S, Orduna T. Chagas disease in the central nervous system in patient infected with HIV: diagnostic and therapeutic difficulties. Rev Chil Infectol. 2017;34:62–6.
Silva AA, Roffe E, Marino AP, dos Santos PV, Quirico-Santos T, Paiva CN, et al. Chagas’ disease encephalitis: intense CD8+ lymphocytic infiltrate is restricted to the acute phase, but is not related to the presence of Trypanosoma cruzi antigens. Clin Immunol. 1999;92:56–66.
Article CAS PubMed Google Scholar
Roffê E, Silva AA, Marino APMP, dos Santos PVA, Lannes-Vieira J. Essential role of VLA-4/VCAM-1 pathway in the establishment of CD8+ T-cell-mediated Trypanosoma cruzi-elicited meningoencephalitis. J Neuroimmunol. 2003;142:17–30.
Baldissera MD, Souza CF, Carmo GM, Monteiro SG, Mendes RE, Stefani LM, et al. Relation between acetylcholinesterase and Na+, K+-ATPase activities with impaired memory of mice experimentally infected by Trypanosoma cruzi. Microb Pathog. 2017;111:75–80.
Article CAS PubMed Google Scholar
Chuenkova MV, PereiraPerrin M. Chagas’ disease parasite promotes neuron survival and differentiation through TrkA nerve growth factor receptor. J Neurochem. 2004;91:385–94.
Article CAS PubMed Google Scholar
Weinkauf C, PereiraPerrin M. Trypanosoma cruzipromotes neuronal and glial cell survival through the neurotrophic receptor TrkC. Infect Immun. 2009;77:1368–75.
Article CAS PubMed PubMed Central Google Scholar
de Melo-Jorge M, PereiraPerrin M. The Chagas’ disease parasite Trypanosoma cruzi exploits nerve growth factor receptor TrkA to infect mammalian hosts. Cell Host Microbe. 2007;1:251–61.
Chuenkova MV, Pereira MA. The T. cruzi trans-sialidase induces PC12 cell differentiation via MAPK/ERK pathway. Neuroreport. 2001;12:3715–8.
Article CAS PubMed Google Scholar
de Assis GMP, Donato MF, Milagre MM, Béla SR, Ricci MF, Batista LA, et al. Participation of central muscarinic receptors on the nervous form of Chagas disease in mice infected via intracerebroventricular with Colombian Trypanosoma cruzi strain. Pathogens [Internet]. 2021;10. Available from: https://doi.org/10.3390/pathogens10020121
Silva RR, Mariante RM, Silva AA, dos Santos ALB, Roffê E, Santiago H, et al. Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi. PLoS One. 2015;10:e0118600.
Article PubMed PubMed Central Google Scholar
Silva AA, Silva RR, Gibaldi D, Mariante RM, dos Santos JB, Pereira IR, et al. Priming astrocytes with TNF enhances their susceptibility to Trypanosoma cruzi infection and creates a self-sustaining inflammatory milieu. J Neuroinflammation [Internet]. 2017;14. Available from: https://doi.org/10.1186/s12974-017-0952-0
Barreto-de-Albuquerque J, Silva-dos-Santos D, Pérez AR, Berbert LR, de Santana-van-Vliet E, Farias-de-Oliveira DA, et al. Trypanosoma cruzi infection through the oral route promotes a severe infection in mice: new disease form from an old infection? PLoS Negl Trop Dis. 2015;9:e0003849.
Article PubMed PubMed Central Google Scholar
Scharfstein J, Schmitz V, Morandi V, Capella M, Paula A, Lima CA. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin b 2 receptors. New York, NY, USA: Rockefeller University Press; 2000.
Coates BM, Sullivan DP, Makanji MY, Du NY, Olson CL, Muller WA, et al. Endothelial transmigration by Trypanosoma cruzi. PLoS One. 2013;8:e81187.
Article PubMed PubMed Central Google Scholar
González FB, Villar SR, Pacini MF, Bottasso OA, Pérez AR. Immune-neuroendocrine and metabolic disorders in human and experimental T. cruzi infection: new clues for understanding Chagas disease pathology. Biochim Biophys Acta Mol basis Dis. 2020;1866:165642.
Pacheco AL, Vicentini G, Matteucci KC, Ribeiro RR, Weinlich R, Bortoluci KR. The impairment in the NLRP3-induced NO secretion renders astrocytes highly permissive to T. cruzi replication. J Leukoc Biol. 2019;106:201–7.
Article CAS PubMed Google Scholar
Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.
Article CAS PubMed PubMed Central Google Scholar
Carod-Artal FJ. Trypanosomiasis, cardiomyopathy and the risk of ischemic stroke. Expert Rev Cardiovasc Ther. 2010;8:717–28.
Duarte-Silva E, Maes M, Macedo D, Savino W, Peixoto CA. Shared neuroimmune and oxidative pathways underpinning Chagas disease and major depressive disorder. Transl Psychiatry. 2020;10:419.
Article PubMed PubMed Central Google Scholar
Gibb J, Hayley S, Poulter MO, Anisman H. Effects of stressors and immune activating agents on peripheral and central cytokines in mouse strains that differ in stressor responsivity. Brain Behav Immun. 2011;25:468–82.
Article CAS PubMed Google Scholar
de Almeida-Leite CM, Silva ICC, Galvão LMDC, Arantes RME. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation. Mem Inst Oswaldo Cruz. 2014;109:459–65.
Article PubMed PubMed Central Google Scholar
Borghi SM, Fattori V, Carvalho TT, Tatakihara VLH, Zaninelli TH, Pinho-Ribeiro FA, et al. Experimental trypanosoma cruzi infection induces pain in mice dependent on early spinal cord glial cells and NFκB activation and cytokine production. Front Immunol. 2020;11:539086.
Article CAS PubMed Google Scholar
Vilar-Pereira G, Castaño Barrios L, da Silva AA, Martins Batista A, Resende Pereira I, Cruz Moreira O, et al. Memory impairment in chronic experimental Chagas disease: benznidazole therapy reversed cognitive deficit in association with reduction of parasite load and oxidative stress in the nervous tissue. PLoS One. 2021;16:e0244710.
Article CAS PubMed PubMed Central Google Scholar
Niborski LL, Potenza M, Chirivi RGS, Simonetti L, Ossowski MS, Grippo V, et al. Recombinant antibody against Trypanosoma cruzi from patients with chronic Chagas heart disease recognizes mammalian nervous system. EBioMedicine. 2021;63:103206.
Article CAS PubMed PubMed Central Google Scholar
Cordova E, Boschi A, Ambrosioni J, Cudos C, Corti M. Reactivation of Chagas disease with central nervous system involvement in HIV-infected patients in Argentina, 1992-2007. Int J Infect Dis. 2008;12:587–92.
Benchetrit A, Andreani G, Avila MM, Rossi D, De Rissio AM, Weissenbacher M, et al. High HIV–Trypanosoma cruzi coinfection levels in vulnerable populations in Buenos Aires, Argentina. AIDS Res Hum Retrovir. 2017;33:330–1.
Stauffert D, Silveira MFD, Mesenburg MA, Manta AB, Dutra ADS, Bicca GLDO, et al. Prevalence of Trypanosoma cruzi/HIV coinfection in southern Brazil. Braz J Infect Dis. 2017;21:180–4.
Reimer-McAtee MJ, Mejia C, Clark T, Terle J, Pajuelo MJ, Cabeza J, et al. HIV and Chagas disease: an evaluation of the use of real-time quantitative polymerase chain reaction to measure levels of Trypanosoma cruzi parasitemia in HIV patients in Cochabamba. Bolivia Am J Trop Med Hyg. 2021;105:643–50.
Article CAS PubMed Google Scholar
Gomez CA, Banaei N. Trypanosoma cruzi reactivation in the brain. N Engl J Med. 2018;378:1824.
Yasukawa K, Patel SM, Flash CA, Stager CE, Goodman JC, Woc-Colburn L. Trypanosoma cruzi meningoencephalitis in a patient with acquired immunodeficiency syndrome. Am J Trop Med Hyg. 2014;91:84–5.
Comments (0)