Adam RD. Giardia duodenalis: biology and pathogenesis. Clin Microbiol Rev. 2021;34:1–35. https://doi.org/10.1128/CMR.00024-19.
Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med. 2015;12:1–22. https://doi.org/10.1371/journal.pmed.1001920.
Rogawski ET, Bartelt LA, Platts-Mills JA, Seidman JC, Samie A, Havt A, et al. Determinants and impact of Giardia infection in the first 2 years of life in the MAL-ED birth cohort. J Pediatric Infect Dis Soc. 2017. https://doi.org/10.1093/jpids/piw082.
Article PubMed PubMed Central Google Scholar
Klotz C, Sannella AR, Weisz F, Chaudhry U, Sroka J, Tůmová P, et al. Extensive testing of a multi-locus sequence typing scheme for Giardia duodenalis assemblage A confirms its good discriminatory power. Parasites and Vectors. 2022;15:1–7. https://doi.org/10.1186/s13071-022-05615-x.
Einarsson E, Ma’ayeh S, Svärd SG. An update on Giardia and giardiasis. Curr Opin Microbiol. 2016;34:47–52. https://doi.org/10.1016/j.mib.2016.07.019.
Bartelt LA, Lima AAM, Kosek M, Peñataro Yori P, Lee G, Guerrant RL. “Barriers” to child development and human potential: the case for including the “Neglected Enteric Protozoa” (NEP) and other enteropathy-associated pathogens in the NTDs. PLoS Negl Trop Dis. 2013;7:1–5. https://doi.org/10.1371/journal.pntd.0002125.
Savioli L, Smith H, Thompson A. Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative.’ Trends Parasitol. 2006;22:203–8. https://doi.org/10.1016/j.pt.2006.02.015.
Article CAS PubMed Google Scholar
Painter J, Gargano J, Collier SA, Yoder JS. Giardiasis surveillance — United States, 2011–2012. MMWR Surveill Summ. 2015;64:15–25.
Nash TE, Herrington DA, Losonsky GA, Levine MM. Experimental human infections with Giardia lamblia. J Infect Dis. 1987;156:974–84. https://doi.org/10.1093/infdis/156.6.974.
Article CAS PubMed Google Scholar
Certad G, Viscogliosi E, Chabé M, Cacciò SM. Pathogenic mechanisms of Cryptosporidium and Giardia. Trends Parasitol. 2017. https://doi.org/10.1016/j.pt.2017.02.006.
Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000Prime Rep. 2015;7:62. https://doi.org/10.12703/P7-62.
Giallourou N, Arnold J, McQuade ETR, Awoniyi M, Becket RVT, Walsh K, et al. Giardia hinders growth by disrupting nutrient metabolism independent of inflammatory enteropathy. Nat Commun. 2023;14:2840. https://doi.org/10.1038/s41467-023-38363-2. Data in this study suggests that in certain environments, Giardia and intestinal microbiota may be co-conspirators: diminishing amino acids and fueling potential toxic amino acid byproducts. This study also proposes a “triple-hit” convergence of an intestinal microbial ecology permissive to Giardia infection together with limited protein erodes intestinal nutrient-metabolic homeostasis to restrict child growth.
Article ADS CAS PubMed PubMed Central Google Scholar
Hanevik K, Wensaas KA, Rortveit G, Eide GE, Mørch K, Langeland N. Irritable bowel syndrome and chronic fatigue 6 years after Giardia infection: a controlled prospective cohort study. Clin Infect Dis. 2014;59:1394–400. https://doi.org/10.1093/cid/ciu629.
Article CAS PubMed PubMed Central Google Scholar
Al-Mekhlafi MSH, Azlin M, Nor Aini U, Shaik A, Sa’iah A, Fatmah MS, et al. Giardiasis as a predictor of childhood malnutrition in Orang Asli children in Malaysia. Trans R Soc Trop Med Hyg. 2005;99:686–91. https://doi.org/10.1016/j.trstmh.2005.02.006.
Berkman DS, Lescano AG, Gilman RH, Lopez SL, Black MM. Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late childhood: a follow-up study. Lancet. 2002;359:564–71. https://doi.org/10.1016/S0140-6736(02)07744-9.
Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012;15:57–62. https://doi.org/10.1016/j.mib.2011.11.002.
Article CAS PubMed Google Scholar
Paget TA, James SL. The mucolytic activity of polyamines and mucosal invasion. Biochem Soc Trans. 1994;22:394S. https://doi.org/10.1042/bst022394s.
Article CAS PubMed Google Scholar
Amat CB, Motta J-P, Fekete E, Moreau F, Chadee K, Buret AG. Cysteine protease–dependent mucous disruptions and differential mucin gene expression in Giardia duodenalis infection. Am J Pathol. 2017;187:2486–98. https://doi.org/10.1016/j.ajpath.2017.07.009.
Article CAS PubMed Google Scholar
Cabrera-Licona A, Solano-González E, Fonseca-Liñán R, Bazán-Tejeda ML, Argüello-García Raúl, Bermúdez-Cruz RM, et al. Expression and secretion of the Giardia duodenalis variant surface protein 9B10A by transfected trophozoites causes damage to epithelial cell monolayers mediated by protease activity. Exp Parasitol. 2017;179:49–64. https://doi.org/10.1016/j.exppara.2017.06.006.
Article CAS PubMed Google Scholar
Dubourg A, Xia D, Winpenny JP, Al Naimi S, Bouzid M, Sexton DW, Wastling JM, Hunter PR, Tyler KM. Giardia secretome highlights secreted tenascins as a key component of pathogenesis. Gigascience. 2018;7(3):1–13. https://doi.org/10.1093/gigascience/giy003.
Article CAS PubMed PubMed Central Google Scholar
Bhargava A, Cotton JA, Dixon BR, Gedamu L, Yates RM, Buret AG. Giardia duodenalis surface cysteine proteases induce cleavage of the intestinal epithelial cytoskeletal protein villin via myosin light chain kinase. Bogyo M, editor. PLoS One. 2015;10:e0136102. https://doi.org/10.1371/journal.pone.0136102.
Article CAS PubMed PubMed Central Google Scholar
Buret A, Gall DG, Olson ME. Growth, activities of enzymes in the small intestine, and ultrastructure of microvillous border in gerbils infected with Giardia duodenalis. Parasitol Res. 1991;77:109–14. https://doi.org/10.1007/BF00935423.
Article CAS PubMed Google Scholar
Wu J, Yang Y, Liu L, Zhu W, Liu M, Yu X, et al. ROS-AMPK/mTOR-dependent enterocyte autophagy is involved in the regulation of Giardia infection-related tight junction protein and nitric oxide levels. Front Immunol. 2023;14:1120996. https://doi.org/10.3389/fimmu.2023.1120996.
Article CAS PubMed PubMed Central Google Scholar
Liu J, Ma’ayeh S, Peirasmaki D, Lundström-Stadelmann B, Hellman L, Svärd SG. Secreted Giardia intestinalis cysteine proteases disrupt intestinal epithelial cell junctional complexes and degrade chemokines. Virulence. 2018;9:879–94. https://doi.org/10.1080/21505594.2018.1451284.
Article CAS PubMed PubMed Central Google Scholar
Yu S, Zhao H, Qin X, Li X, Guo J, Li W. Giardia duodenalis-induced G0/G1 intestinal epithelial cell cycle arrest and apoptosis involve activation of endoplasmic reticulum stress in vitro. Front Immunol. 2023;14:1–12. https://doi.org/10.3389/fimmu.2023.1127552.
Platts-Mills JA, Liu J, Rogawski ET, Kabir F, Lertsethtakarn P, Siguas M, et al. Use of quantitative molecular diagnostic methods to assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource settings: a reanalysis of the MAL-ED cohort study. Lancet Glob Heal. 2018. https://doi.org/10.1016/S2214-109X(18)30349-8.
Das R, Palit P, Haque MA, Levine MM, Kotloff KL, Nasrin D, et al. Symptomatic and asymptomatic enteric protozoan parasitic infection and their association with subsequent growth parameters in under five children in South Asia and sub-Saharan Africa. Bartelt LA, editor. PLoS Negl Trop Dis. 2023;17:e0011687. https://doi.org/10.1371/journal.pntd.0011687.
Article PubMed PubMed Central Google Scholar
Iqbal NT, Syed S, Kabir F, Jamil Z, Akhund T, Qureshi S, et al. Pathobiome driven gut inflammation in Pakistani children with environmental enteric dysfunction. Mantis NJ, editor. PLoS One. 2019;14:e0221095. https://doi.org/10.1371/journal.pone.0221095.
Article CAS PubMed PubMed Central Google Scholar
Rogawski ET, Liu J, Platts-Mills JA, Kabir F, Lertsethtakarn P, Siguas M, et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Heal. 2018;6:e1319-28. https://doi.org/10.1016/S2214-109X(18)30351-6.
Fauziah N, Aviani JK, Agrianfanny YN, Fatimah SN. Intestinal parasitic infection and nutritional status in children under five years old: a systematic review. Trop Med Infect Dis. 2022;7:371. https://doi.org/10.3390/tropicalmed7110371.
Article PubMed PubMed Central Google Scholar
Sackey M-E, Weigel MM, Armijos RX. Predictors and nutritional consequences of intestinal parasitic infections in rural Ecuadorian children. J Trop Pediatr. 2003;49:17–23. https://doi.org/10.1093/tropej/49.1.17.
Carvalho-Costa FA, Gonçalves AQ, Lassance SL, da Silva Neto LM, Salmazo CAA, Bóia MN. Giardia lamblia and other intestinal parasitic infections and their relationships with nutritional status in children in Brazilian Amazon. Rev Inst Med Trop Sao Paulo. 2007;49:147–53. https://doi.org/10.1590/S0036-46652007000300003.
Goto R, Panter-Brick C, Northrop-Clewes CA, Manahdhar R, Tuladhar NR. Poor intestinal permeability in mildly stunted Nepali children: associations with weaning practices and Giardia lamblia infection. Br J Nutr. 2002;88:141–9. https://doi.org/10.1079/bjnbjn2002599.
Article CAS PubMed Google Scholar
Ajjampur SSR, Koshy B, Venkataramani M, Sarkar R, Joseph AA, Jacob KS, et al. Effect of cryptosporidial and giardial diarrhoea on social maturity, intelligence and physical growth in children in a semi-urban slum in south India. Ann Trop Paediatr. 2011;31:205–12. https://doi.org/10.1179/1465328111Y.0000000003.
Comments (0)