Musca domestica Implicated in the Ecology of the Extended-spectrum Beta-lactamase-producing Escherichia coli (ESBL-EC)

Miranda CD, Cammack JA, Tomberlin JK. Life-history traits of house fly, Musca domestica L. (Diptera: Muscidae), reared on three manure types. J Insects Food Feed. 2019;6(1):81–90. https://doi.org/10.3920/JIFF2019.0001.

Article  Google Scholar 

Lam K, Geisreiter C, Gries G. Ovipositing female house flies provision offspring larvae with bacterial food. Entomol Exp Appl. 2009;133(3):292–5. https://doi.org/10.1111/j.1570-7458.2009.00928.x.

Article  Google Scholar 

Zurek K, Nayduch D. Bacterial associations across house fly life history: evidence for transstadial carriage from managed manure. J Insect Sci. 2016;16(1):2. https://doi.org/10.1093/jisesa/iev156.

Article  PubMed  PubMed Central  Google Scholar 

Ommi D, Hemmatinezhad B, Hafshejani TT, Khamesipour F. Incidence and antimicrobial resistance of Campylobacter and Salmonella from houseflies (Musca domestica) in kitchens, farms, hospitals and slaughter houses. Proc Natl Acad Sci India Sect B: Biol Sci. 2016;87:1285–1291. https://doi.org/10.1007/s40011-016-0705-3.

Berry ED, Wells JE, Durso LM, Friesen KM, Bono JL, Suslow TV. Occurrence of Escherichia coli O157:H7 in pest flies captured in leafy greens plots grown near a beef cattle feedlot. J Food Prot. 2019;82(8):1300–7. https://doi.org/10.4315/0362-028X.JFP-18-601.

Article  PubMed  Google Scholar 

Fukuda A, Usui M, Okubo T, Tamura Y. Horizontal transfer of plasmid-mediated cephalosporin resistance genes in the intestine of houseflies (Musca domestica). Microb Drug Resist. 2016;22(4):336–41. https://doi.org/10.1089/mdr.2015.0125.

Article  PubMed  CAS  Google Scholar 

Rahmadani F, Lee H. Dynamic model for the epidemiology of diarrhea and simulation considering multiple disease carriers. Int J Environ Res Public Health. 2020;17(16):5692. https://doi.org/10.3390/ijerph17165692.

Article  PubMed  PubMed Central  Google Scholar 

Dogra V, Aggarwal AK. Association of poultry farms with housefly and morbidity: a comparative study from Raipur Rani, Haryana. Indian J Community Med. 2010;35(4):473–7. https://doi.org/10.4103/0970-0218.74342.

Article  PubMed  PubMed Central  Google Scholar 

Administración de Alimentos y Drogas de los Estados Unidos. Summary report on antimicrobials sold or distributed for use in food-producing animals. 2020. https://www.fda.gov/media/144427/download.

Xu Y, Li H, Shi R, Lv J, Li B, Yang F, Zheng X, Xu J. Antibiotic resistance genes in different animal manures and their derived organic fertilizer. Environ Sci Europe. 2020;32:102. https://doi.org/10.1186/s12302-020-00381-y.

Article  CAS  Google Scholar 

Cervelin V, Fongaro G, Pastore JB, Engel F, Reimers MA, Viancelli A. Enterobacteria associated with houseflies (Musca domestica) as an infection risk indicator in swine production farms. Acta Trop. 2018;185:13–7. https://doi.org/10.1016/j.actatropica.2018.04.024.

Article  PubMed  CAS  Google Scholar 

WHO. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. 2017. https://www.who.int/medicines/areas/rational_use/PPLreport_2017_09_19.pdf?ua=1.

Literak I, Dolejska M, Rybarikova J, Cizek A, Strejckova P, Vyskocilova M, Friedman M, Klimes J. Highly variable antimicrobial resistance patterns in commensal Escherichia coli isolates from pigs, sympatric rodents, and flies. Microb Drug Resist. 2009;15(3):229–37. https://doi.org/10.1089/mdr.2009.0913.

Article  PubMed  CAS  Google Scholar 

Usui M, Iwasa T, Fukuda A, Sato T, Okubo T, Tamura Y. The role of flies in spreading the extended-spectrum β-lactamase gene from cattle. Microb Drug Resist. 2013;19(5):415–20. https://doi.org/10.1089/mdr.2012.0251.

Article  PubMed  CAS  Google Scholar 

Burrus RG, Hogsette JA, Kaufman PE, Maruniak JE, Simonne AH, Mai V. Prevalence of Escherichia coli O157:H7 from house flies (Diptera: Muscidae) and dairy samples in North Central Florida. J Med Entomol. 2017;54(3):733–41. https://doi.org/10.1093/jme/tjw205.

Article  PubMed  CAS  Google Scholar 

Zhang A, Li Y, Guan Z, Tuo H, Liu D, Yang Y, Xu C, Lei C, Wang H. Characterization of resistance patterns and detection of apramycin resistance genes in Escherichia coli isolated from chicken feces and houseflies after apramycin administration. Front Microbiol. 2018;9:328. https://doi.org/10.3389/fmicb.2018.00328.

Article  PubMed  PubMed Central  Google Scholar 

Chakrabarti S, Kambhampati S, Zurek L. Assessment of house fly dispersal between rural and urban habitats in Kansas, USA. J Kansas Entomol Soc. 2010;83(2):172–88. https://doi.org/10.2317/JKES0809.15.1.

Article  Google Scholar 

Collinet-Adler S, Babji S, Francis M, Kattula D, Premkumar PS, Sarkar R, Mohan VR, Ward H, Kang G, Balraj V, Naumova EN. Environmental factors associated with high fly densities and diarrhea in Vellore, India. Appl Environ Microbiol. 2015;81(17):6053–8. https://doi.org/10.1128/AEM.01236-15.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Capinera JL. House Fly, Musca domestica L. (Diptera: Muscidae). In: Capinera JL, editor. Encyclopedia of entomology. Dordrecht: Springer; 2008. pp. 1877–1880. https://doi.org/10.1007/978-1-4020-6359-6_1415.

Meade L, Harley E, Cotton A, Howie JM, Pomiankowski A, Fowler K. Variation in the benefits of multiple mating on female fertility in wild stalk-eyed flies. Ecol Evol. 2017;7(23):10103–15. https://doi.org/10.1002/ece3.3486.

Article  PubMed  PubMed Central  Google Scholar 

Godwin RM, Mayer DG, Brown GW, Leemon DM, James PJ. Predicting nuisance fly outbreaks on cattle feedlots in subtropical Australia. Anim Prod Sci. 2017;58(2):343–9. https://doi.org/10.1071/AN16112.

Article  Google Scholar 

Usui M, Shirakawa T, Fukuda A, Tamura Y. The role of flies in disseminating plasmids with antimicrobial-resistance genes between farms. Microb Drug Resist. 2015;21(5):562–9. https://doi.org/10.1089/mdr.2015.0033.

Article  PubMed  CAS  Google Scholar 

Van Boeckel TP, Pires J, Silvester R, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 2019;365(6459):eaaw1944. https://doi.org/10.1126/science.aaw1944.

Article  PubMed  CAS  Google Scholar 

Bengtsson B, Greko C. Antibiotic resistance–consequences for animal health, welfare, and food production. Upsala J Med Sci. 2014;119(2):96–102. https://doi.org/10.3109/03009734.2014.901445.

Article  PubMed  PubMed Central  Google Scholar 

Bahrndorff S, de Jonge N, Skovgård H, Nielsen JL. Bacterial communities Associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS ONE. 2017;12(1):e0169753. https://doi.org/10.1371/journal.pone.0169753.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Park R, Dzialo MC, Spaepen S, Nsabimana D, Gielens K, Devriese H, Crauwels S, Tito RY, Raes J, Lievens B, Verstrepen KJ. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome. 2019;7(1):147. https://doi.org/10.1186/s40168-019-0748-9.

Article  PubMed  PubMed Central  Google Scholar 

Fukuda A, Usui M, Okamura M, Dong-Liang H, Tamura Y. Role of flies in the maintenance of antimicrobial resistance in farm environments. Microb Drug Resist. 2019;25(1):127–32. https://doi.org/10.1089/mdr.2017.0371.

Article  PubMed  CAS  Google Scholar 

Poudel A, Kang Y, Mandal RK, Kalalah A, Butaye P, Hathcock T, Kelly P, Walz P, Macklin K, Cattley R, Price S, Adekanmbi F, Zhang L, Kitchens S, Kaltenboeck B, Wang C. Comparison of microbiota, antimicrobial resistance genes and mobile genetic elements in flies and the feces of sympatric animals. FEMS Microbiol Ecol. 2020;96(4):fiaa027. https://doi.org/10.1093/femsec/fiaa027.

Article  PubMed  CAS  Google Scholar 

Nayduch D, Noblet GP, Stutzenberger FJ. Vector potential of houseflies for the bacterium Aeromonas caviae. Med Vet Entomol. 2002;16(3):193–8. https://doi.org/10.1046/j.1365-2915.2002.00363.x.

Article  PubMed  CAS  Google Scholar 

Doud CW, Zurek L. Enterococcus faecalis OG1RF:pMV158 survives and proliferates in the house fly digestive tract. J Med Entomol. 2012;49(1):150–5. https://doi.org/10.1603/me11167.

Article  PubMed  CAS  Google Scholar 

Joyner C, Mills MK, Nayduch D. Pseudomonas aeruginosa in Musca domestica L.: temporospatial examination of bacteria population dynamics and house fly antimicrobial responses. PLoS ONE. 2013;8(11):e79224. https://doi.org/10.1371/journal.pone.0079224.

Article 

Comments (0)

No login
gif