Context-specific functions of chromatin remodellers in development and disease

Flaus, A. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

Article  CAS  PubMed  Google Scholar 

Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6, a026930 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Pulice, J. L. & Kadoch, C. Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb. Symp. Quant. Biol. 81, 53–60 (2016).

Article  PubMed  Google Scholar 

Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes. Dev. 33, 936–959 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho, P. J., Lloyd, S. M. & Bao, X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 146, dev178780 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alendar, A. & Berns, A. Sentinels of chromatin: chromodomain helicase DNA-binding proteins in development and disease. Genes Dev. 35, 1403–1430 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clapier, C. R. Sophisticated conversations between chromatin and chromatin remodelers, and dissonances in cancer. Int. J. Mol. Sci. 22, ijms22115578 (2021).

Article  Google Scholar 

Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian development. Development 143, 2882–2897 (2016). Hota and Bruneau comprehensively review genetic and functional studies showing the unique roles of chromatin remodellers during mammalian development.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sundaramoorthy, R. & Owen-Hughes, T. Chromatin remodelling comes into focus. F1000Res 9, https://doi.org/10.12688/f1000research.21933.1 (2020).

Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes. Dev. 6, 2288–2298 (1992).

Article  CAS  PubMed  Google Scholar 

Sternberg, P. W., Stern, M. J., Clark, I. & Herskowitz, I. Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567–577 (1987).

Article  CAS  PubMed  Google Scholar 

Nasmyth, K., Stillman, D. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48, 579–587 (1987).

Article  CAS  PubMed  Google Scholar 

Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

Article  CAS  Google Scholar 

Hota, S. K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222–229 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

Article  CAS  PubMed  Google Scholar 

Langst, G., Bonte, E. J., Corona, D. F. & Becker, P. B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).

Article  CAS  Google Scholar 

Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

Article  CAS  PubMed  Google Scholar 

Ayala, R. et al. Structure and regulation of the human INO80-nucleosome complex. Nature 556, 391–395 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013). This is a clear and concise review of the basic biochemical mechanisms of nucleosome remodelling.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

Article  CAS  Google Scholar 

Längst, G. & Becker, P. B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561–2568 (2001).

Article  PubMed  Google Scholar 

Drane, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dyer, M. A., Qadeer, Z. A., Valle-Garcia, D. & Bernstein, E. ATRX and DAXX: mechanisms and mutations. Cold Spring Harb. Perspect. Med. 7, a026567 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Ni, K. et al. LSH mediates gene repression through macroH2A deposition. Nat. Commun. 11, 5647 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

Article  CAS  PubMed  Google Scholar 

Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).

Article  CAS  PubMed  Google Scholar 

Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 e1220 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erdel, F. & Rippe, K. Chromatin remodelling in mammalian cells by ISWI-type complexes—where, when and why? FEBS J. 278, 3608–3618 (2011).

Article  CAS  PubMed  Google Scholar 

Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes. Dev. 10, 2117–2130 (1996).

Article  CAS  PubMed  Google Scholar 

Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI–SNF complex. EMBO J. 15, 5370–5382 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8, e49424 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, C. Y. et al. Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Mol. Cell 81, 4964–4978 e4968 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biggin, M. D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif