The Brain–Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease

Pavlov VA, Chavan SS, Tracey KJ. Molecular and functional neuroscience in immunity. Annu Rev Immunol. 2018;36:783–812. https://doi.org/10.1146/annurev-immunol-042617-053158.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pereira VH, Cerqueira JJ, Palha JA, Sousa N. Stressed brain, diseased heart: a review on the pathophysiologic mechanisms of neurocardiology. Int J Cardiol. 2013;166(1):30–7. https://doi.org/10.1016/j.ijcard.2012.03.165.

Article  PubMed  Google Scholar 

Rijkers K, Majoie HJ, Hoogland G, Kenis G, De Baets M, Vles JS. The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol. 2009;216(2):258–71. https://doi.org/10.1016/j.expneurol.2008.12.014.

Article  CAS  PubMed  Google Scholar 

Liu T, Young PR, McDonnell PC, White RF, Barone FC, Feuerstein GZ. Cytokine-induced neutrophil chemoattractant mRNA expressed in cerebral ischemia. Neurosci Lett. 1993;164(1–2):125–8. https://doi.org/10.1016/0304-3940(93)90873-j.

Article  CAS  PubMed  Google Scholar 

Yu Y, Zhang ZH, Wei SG, Chu Y, Weiss RM, Heistad DD, et al. Central gene transfer of interleukin-10 reduces hypothalamic inflammation and evidence of heart failure in rats after myocardial infarction. Circ Res. 2007;101(3):304–12. https://doi.org/10.1161/CIRCRESAHA.107.148940.

Article  CAS  PubMed  Google Scholar 

Scherbakov N, Doehner W. Heart-brain interactions in heart failure. Card Fail Rev. 2018;4(2):87–91. https://doi.org/10.15420/cfr.2018.14.2.

Article  PubMed  PubMed Central  Google Scholar 

Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U. Brain inflammation and hypertension: the chicken or the egg? J Neuroinflammation. 2015;12:85. https://doi.org/10.1186/s12974-015-0306-8.

Article  PubMed  PubMed Central  Google Scholar 

Alfaddagh A, Martin SS, Leucker TM, Michos ED, Blaha MJ, Lowenstein CJ, et al. Inflammation and cardiovascular disease: from mechanisms to therapeutics. Am J Prev Cardiol. 2020;4:100130. https://doi.org/10.1016/j.ajpc.2020.100130.

Article  PubMed  PubMed Central  Google Scholar 

Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG, Nissen SE, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet. 2023;401(10384):1293–301. https://doi.org/10.1016/S0140-6736(23)00215-5.

Article  CAS  PubMed  Google Scholar 

• Badoer E. New insights into the role of inflammation in the brain in heart failure. Front Physiol. 2022;13:837723. https://doi.org/10.3389/fphys.2022.837723. This paper reviews the influence of circulating, proinflammatory cytokines on cardiac function beyond the cardiovascular system, including brain activation of the sympathetic nervous system.

Article  PubMed  PubMed Central  Google Scholar 

Chan SH, Chan JY. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal. 2013;19(10):1074–84. https://doi.org/10.1089/ars.2012.4585.

Article  CAS  PubMed  Google Scholar 

Paton JF, Waki H. Is neurogenic hypertension related to vascular inflammation of the brainstem? Neurosci Biobehav Rev. 2009;33(2):89–94. https://doi.org/10.1016/j.neubiorev.2008.05.020.

Article  CAS  PubMed  Google Scholar 

Saavedra JM, Angiotensin II. AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond). 2012;123(10):567–90. https://doi.org/10.1042/CS20120078.

Article  CAS  PubMed  Google Scholar 

Wu KL, Chan SH, Chan JY. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation. 2012;9:212. https://doi.org/10.1186/1742-2094-9-212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Kloet AD, Krause EG, Shi PD, Zubcevic J, Raizada MK, Sumners C. Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther. 2013;138(3):428–40. https://doi.org/10.1016/j.pharmthera.2013.02.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM. Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol. 2005;32(5–6):419–25. https://doi.org/10.1111/j.1440-1681.2005.04205.x.

Article  CAS  PubMed  Google Scholar 

Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96(7):611–22. https://doi.org/10.1113/expphysiol.2010.052332.

Article  PubMed  Google Scholar 

Takahashi H. Upregulation of the renin-angiotensin-aldosterone-ouabain system in the brain is the core mechanism in the genesis of all types of hypertension. Int J Hypertens. 2012;2012:242786. https://doi.org/10.1155/2012/242786.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasparov S, Teschemacher AG. Altered central catecholaminergic transmission and cardiovascular disease. Exp Physiol. 2008;93(6):725–40. https://doi.org/10.1113/expphysiol.2007.041814.

Article  CAS  PubMed  Google Scholar 

Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Ufnal M, Zera T. Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J Physiol Pharmacol. 2010;61(5):509–21.

CAS  PubMed  Google Scholar 

Muller DN, Mervaala EM, Schmidt F, Park JK, Dechend R, Genersch E, et al. Effect of bosentan on NF-kappaB, inflammation, and tissue factor in angiotensin II-induced end-organ damage. Hypertension. 2000;36(2):282–90. https://doi.org/10.1161/01.hyp.36.2.282.

Article  CAS  PubMed  Google Scholar 

Paton JF, Wang S, Polson JW, Kasparov S. Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. J Mol Med (Berl). 2008;86(6):705–10. https://doi.org/10.1007/s00109-008-0324-4.

Article  CAS  PubMed  Google Scholar 

Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience. 2010;171(3):852–8. https://doi.org/10.1016/j.neuroscience.2010.09.029.

Article  CAS  PubMed  Google Scholar 

Guillot FL, Audus KL. Angiotensin peptide regulation of bovine brain microvessel endothelial cell monolayer permeability. J Cardiovasc Pharmacol. 1991;18(2):212–8. https://doi.org/10.1097/00005344-199108000-00006.

Article  CAS  PubMed  Google Scholar 

Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29(3):640–7. https://doi.org/10.1038/jcbfm.2008.158.

Article  CAS  PubMed  Google Scholar 

Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63(3):572–9. https://doi.org/10.1161/HYPERTENSIONAHA.113.01743.

Article  CAS  PubMed  Google Scholar 

Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J. Angiotensin II-induced hypertension is modulated by nuclear factor-kappaB in the paraventricular nucleus. Hypertension. 2012;59(1):113–21. https://doi.org/10.1161/HYPERTENSIONAHA.111.182154.

Felder RB, Yu Y, Zhang ZH, Wei SG. Pharmacological treatment for heart failure: a view from the brain. Clin Pharmacol Ther. 2009;86(2):216–20. https://doi.org/10.1038/clpt.2009.117.

Article  CAS  PubMed  Google Scholar 

Felder RB. Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure. Exp Physiol. 2010;95(1):19–25. https://doi.org/10.1113/expphysiol.2008.045948.

Article  CAS  PubMed  Google Scholar 

Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, et al. Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf). 2011;203(2):289–97. https://doi.org/10.1111/j.1748-1716.2011.02313.x.

Article  CAS  PubMed  Google Scholar 

Reina-Couto M, Pereira-Terra P, Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in human heart failure: major mediators and therapeutic targets. Front Physiol. 2021;12:746494. https://doi.org/10.3389/fphys.2021.746494.

Article  PubMed  PubMed Central  Google Scholar 

Xu B, Zheng H, Patel KP. Enhanced activation of RVLM-projecting PVN neurons in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2012;302(8):H1700–11. https://doi.org/10.1152/ajpheart.00722.2011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000;102(25):3060–7. https://doi.org/10.1161/01.cir.102.25.3060.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif