Mechanical Circulatory Support for High-Risk Percutaneous Coronary Intervention

Bortnick AE, Epps KC, Selzer F, Anwaruddin S, Marroquin OC, Srinivas V, et al. Five-year follow-up of patients treated for coronary artery disease in the face of an increasing burden of co-morbidity and disease complexity (from the NHLBI Dynamic Registry). Am J Cardiol. 2014;113:573–9.

Article  PubMed  Google Scholar 

Protty M, Sharp ASP, Gallagher S, Farooq V, Spratt JC, Ludman P, et al. Defining percutaneous coronary intervention complexity and risk: an analysis of the United Kingdom BCIS database 2006–2016. JACC Cardiovasc Interv. 2022;15:39–49.

Article  PubMed  Google Scholar 

Khandelwal G, Spirito A, Tanner R, Koshy AN, Sartori S, Salehi N, et al. Validation of UK-BCIS CHIP score to predict 1-year outcomes in a contemporary united states population. JACC Cardiovasc Interv. 2023;16:1011–20.

Article  PubMed  Google Scholar 

Nayyar M, Donovan KM, Khouzam RN. When more is not better—appropriately excluding patients from mechanical circulatory support therapy. Ann Transl Med. 2018;6:9–9.

Article  PubMed  PubMed Central  Google Scholar 

Kim SH, Baumann S, Behnes M, Borggrefe M, Akin I. Patient selection for protected percutaneous coronary intervention: Who benefits the most? Cardiol Clin. W.B. Saunders; 2020:507–16.

Atkinson TM, Ohman EM, O’neill WW, Rab T, Cigarroa JE. Statement from the interventional council of the ACC a practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention an interventional perspective. JACC: Cardiovasc Interv. 2016;9:871–83.

PubMed  Google Scholar 

Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the american college of cardiology/american heart association joint committee on clinical practice guidelines. J Am Coll Cardiol. 2022;79:e21–129.

Article  PubMed  Google Scholar 

•• Zeitouni M, Marquis-Gravel G, Smilowitz NR, Zakroysky P, Wojdyla DM, Amit AP, et al. Prophylactic mechanical circulatory support use in elective percutaneous coronary intervention for patients with stable coronary artery disease. Circ Cardiovasc Interv. 2022;15:E011534. Findings from this study suggest that the use of prophylactic MCS has increased over time for elective PCI in patients with stable coronary artery disease. Intra-aortic balloon pump was associated with higher major adverse cardiac events but lower risk of procedural complications compared with other MCS.

Article  CAS  PubMed  Google Scholar 

Werner N, Akin I, Al-Rashid F, Bauer T, Ibrahim K, Karatolios K, et al. Expertenkonsensus zum praktischen Einsatz von Herzkreislaufunterstützungssystemen bei Hochrisiko-Koronarinterventionen. Kardiologe. 2017;11:460–72.

Article  Google Scholar 

Atkinson TM, Ohman EM, O’Neill WW, Rab T, Cigarroa JE. A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention. JACC Cardiovasc Interv. 2016;9:871–83.

Article  PubMed  Google Scholar 

Kearney KE, Mccabe JM, Riley RF. Patient selection and procedural strategy are key in treating this evolving patient population. Hemodynamic Support for High-Risk PCI. Cardiac Interv Today. 2019;13:44–8.

Google Scholar 

Grodin JL, Mullens W, Dupont M, Wu Y, Taylor DO, Starling RC, et al. Prognostic role of cardiac power index in ambulatory patients with advanced heart failure. Eur J Heart Fail. 2015;17:689–96.

Article  PubMed  Google Scholar 

Papaioannou TG, Stefanadis C. Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. ASAIO J. 2005;51:296–300.

Article  PubMed  Google Scholar 

Perera D, Stables R, Thomas M, Booth J, Pitt M, Blackman D, et al. Elective intra-aortic balloon counterpulsation during high-risk percutaneous coronary intervention a randomized controlled trial. J Am Med Assoc. 2010;308:867–74. Available from: https://jamanetwork.com/

Perera D, Stables R, Clayton T, De Silva K, Lumley M, Clack L, et al. Long-term mortality data from the balloon pump-assisted coronary intervention study (BCIS-1): A randomized, controlled trial of elective balloon counterpulsation during high-risk percutaneous coronary intervention. Circulation. 2013;127:207–12.

Article  PubMed  Google Scholar 

Glazier JJ, Kaki A. The impella device: Historical background, clinical applications and future directions. Int J Angiol. 2019;28:118–23.

Article  PubMed  Google Scholar 

Rihal CS, Naidu SS, Givertz MM, Szeto WY, Burke JA, Kapur NK, et al. 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care. J Am Coll Cardiol. 2015;65:e7–26.

Article  PubMed  Google Scholar 

Van Edom CJ, Gramegna M, Baldetti L, Beneduce A, Castelein T, Dauwe D, et al. Management of bleeding and hemolysis during percutaneous microaxial flow pump support: a practical approach. JACC Cardiovasc Interv. 2023;16:1707–20.

Article  PubMed  Google Scholar 

Dixon SR, Henriques JPS, Mauri L, Sjauw K, Civitello A, Kar B, et al. A prospective feasibility trial investigating the use of the impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (The PROTECT I Trial). JACC Cardiovasc Interv. 2009;2:91–6.

Article  PubMed  Google Scholar 

Ww O, Kleiman NS, Moses J, Henriques JP, Dixon S, Massaro J, et al. Interventional cardiology a prospective, randomized clinical trial of hemodynamic support with impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention The PROTECT II Study. Circulation. 2012;126:1717–27. https://doi.org/10.1161/CIRCULATIONAHA.

Article  Google Scholar 

Dangas GD, Kini AS, Sharma SK, Henriques JPS, Claessen BE, Dixon SR, et al. Impact of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump on prognostically important clinical outcomes in patients undergoing high-risk percutaneous coronary intervention (from the PROTECT II randomized trial). Am J Cardiol. 2014;113:222–8.

Article  PubMed  Google Scholar 

Sjauw KD, Konorza T, Erbel R, Danna PL, Viecca M, Minden HH, et al. Supported high-risk percutaneous coronary intervention with the impella 2.5 device. The Europella Registry. J Am Coll Cardiol. 2009;54:2430–4.

Article  PubMed  Google Scholar 

Maini B, Naidu SS, Mulukutla S, Kleiman N, Schreiber T, Wohns D, et al. Real-world use of the Impella 2.5 circulatory support system in complex high-risk percutaneous coronary intervention: The USpella Registry. Catheter Cardiovasc Interv. 2012;80:717–25.

Article  PubMed  Google Scholar 

• O’Neill WW, Anderson M, Burkhoff D, Grines CL, Kapur NK, Lansky AJ, et al. Improved outcomes in patients with severely depressed LVEF undergoing percutaneous coronary intervention with contemporary practices. Am Heart J. 2022;248:139–49. The PROTECT III study demonstrates improved completeness of revascularization, less bleeding, and improved 90-day clinical outcomes compared to matched patients from the PROTECT II trial (Impella-supported high-risk percutaneous coronary intervention among patients with severely depressed LVEF.

Article  PubMed  Google Scholar 

Afana M, Altawil M, Basir M, Alqarqaz M, Alaswad K, Eng M, et al. Transcaval access for the emergency delivery of 5.0 liters per minute mechanical circulatory support in cardiogenic shock. Catheter Cardiovasc Interv. 2021;97:555–64.

Article  PubMed  Google Scholar 

McCabe JM, Kaki AA, Pinto DS, Kirtane AJ, Nicholson WJ, Grantham JA, et al. Percutaneous axillary access for placement of microaxial ventricular support devices: The axillary access registry to monitor safety (ARMS). Circ Cardiovasc Interv. 2021;14:e009657.

Article  CAS  PubMed  Google Scholar 

Azzalini L, Condos G, Kearney KE, Lombardi WL, McCabe JM. Mechanical circulatory support via percutaneous transcarotid access for high-risk percutaneous coronary intervention. JACC Cardiovasc Interv. 2023;16:106–8.

Article  PubMed  Google Scholar 

Upadhyay R, Alrayes H, Arno S, Kaushik M, Basir MB. Current landscape of temporary percutaneous mechanical circulatory support technology. US Cardiol Rev. 2021;15:15-e21.

Article  CAS  Google Scholar 

Kovacic JC, Nguyen HT, Karajgikar R, Sharma SK, Kini AS. The impella recover 2.5 and TandemHeart ventricular assist devices are safe and associated with equivalent clinical outcomes in patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv. 2013;82:E28-37.

Article  PubMed  PubMed Central  Google Scholar 

Gandhi KD, Moras EC, Niroula S, Lopez PD, Aggarwal D, Bhatia K, et al. Left ventricular unloading with impella versus IABP in patients with VA-ECMO: a systematic review and meta-analysis. Am J Cardiol. 2023;208:53–9.

Article  PubMed  Google Scholar 

Chiang M, Gonzalez PE, Basir MB, O’Neill BP, Lee J, Frisoli T, et al. Modified Transcaval left atrial venoarterial extracorporeal membrane oxygenation without preplanning contrast CT: Step-by-step guide. JACC Cardiovasc Interv. 2022;15:e181–5.

Article  PubMed  Google Scholar 

Al Hanshi SAM, Al OF. A case study of Harlequin syndrome in VA-ECMO. Qatar Med J. 2017;2017:39.

Article  PubMed Central  Google Scholar 

Bai M, Lu A, Pan C, Hu S, Qu W, Zhao J, et al. Veno-arterial extracorporeal membrane oxygenation in elective high-risk percutaneous coronary interventions. Front Med (Lausanne). 2022;9.

Shaukat A, Hryniewicz-Czeneszew K, Sun B, Mudy K, Wilson K, Tajti P, et al. Outcomes of extracorporeal membrane oxygenation support for complex high-risk elective percutaneous coronary interventions: a single-center experience and review of the literature. J Invasive Cardiol. 2018;30:456–60.

PubMed  Google Scholar 

van den Brink FS, Meijers TA, Hofma SH, van Boven AJ, Nap A, Vonk A, et al. Prophylactic veno-arterial extracorporeal membrane oxygenation in patients undergoing high-risk percutaneous coronary intervention. Neth Hear J. 2020;28:139–44.

Article  Google Scholar 

Tomasello SD, Boukhris M, Ganyukov V, Galassi AR, Shukevich D, Haes B, et al. Outcome of extracorporeal membrane oxygenation support for complex high-risk elective percutaneous coronary interventions: a single-center experience. Heart and Lung: Journal of Acute and Critical Care. 2015;44:309–13.

Article  PubMed  Google Scholar 

Samol A, Schmidt S, Zeyse M, Wiemer M, Luani B. High-risk PCI under support of a pulsatile left ventricular assist device – First German experience with the iVAC2L system. Int J Cardiol. 2019;297:30–5.

Article  PubMed  Google Scholar 

Uil CAD, Daemen J, Lenzen MJ, Maugenest AM, Joziasse L, Van Geuns RJ, et al. Pulsatile iVAC 2L circulatory support in high-risk percutaneous coronary intervention. EuroIntervention. 2017;12:1689–96.

Article  Google Scholar 

De Maria GL, Garcia-Garcia HM, Scarsini R, Finn A, Sato Y, Virmani R, et al. Novel device-based therapies to improve outcome in ST-segment elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care. Oxford University Press; 2021:687–97.

Van de Hoef TP, Nolte F, Delewi R, Henriques JPS, Spaan JAE, Tijssen JGP, et al. Intracoronary hemodynamic effects of pressure-controlled intermittent coronary sinus occlusion (PICSO): results from the First-In-Man Prepare PICSO Study. J Interv Cardiol. 2012;25:549–56.

Article  PubMed  Google Scholar 

Azzalini L, Montorfano M, Latib A, Colombo A. High-risk left main percutaneous coronary intervention supported by pressure-controlled intermittent coronary sinus occlusion. EuroIntervention. 2016;12:e1437–e1437.

Article  PubMed  Google Scholar 

Williams MJ, Dow CJ, Newell JB, Palacios IF, Picard MH. Prevalence and timing of regional myocardial dysfunction after rotational coronary atherectomy. J Am Coll Cardiol. 1996;28:861–9.

Comments (0)

No login
gif