Skull bone marrow channels as immune gateways to the central nervous system

Vajkoczy, P., Laschinger, M. & Engelhardt, B. α4-integrin-VCAM-1 binding mediates G-protein–independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 108, 557–565 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steinman, L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat. Rev. Drug Discov. 4, 510–518 (2005).

Article  CAS  PubMed  Google Scholar 

Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).

Article  CAS  PubMed  Google Scholar 

Hove, H. V. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

Article  PubMed  Google Scholar 

Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature https://doi.org/10.1038/s41586-020-03116-4 (2021).

Croese, T., Castellani, G. & Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nat Immunol. https://doi.org/10.1038/s41590-021-00994-2 (2021).

Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6, e29738 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

Article  PubMed  Google Scholar 

Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell https://doi.org/10.1016/j.cell.2020.12.040 (2021).

Merlini, A. et al. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci. 25, 887–899 (2022).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. Sci. Immunol. 8, eabq0375 (2023).

Article  CAS  PubMed  Google Scholar 

Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0301-3 (2018).

Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, H. et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560, 55–60 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazzitelli, J. A. et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. https://doi.org/10.1038/s41593-022-01029-1 (2022).

Pulous, F. E. et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat. Neurosci. 25, 567–576 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolabas, Z. I. et al. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 186, 3706–3725 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lachkar, S. et al. The diploic veins: a comprehensive review with clinical applications. Cureus 11, e4422 (2019).

PubMed  Google Scholar 

García-González, U. et al. The diploic venous system: surgical anatomy and neurosurgical implications. Neurosurg. Focus 27, E2 (2009).

Article  PubMed  Google Scholar 

Alarfaj, A. et al. Magnetic resonance imaging analysis of human skull diploic venous anatomy. Surg. Neurol. Int. 12, 249 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Grüneboom, A. et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat. Metab. 1, 236–250 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285, 25103–25108 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Early developing B cells undergo negative selection by central nervous system-specific antigens in themeninges. Immunity https://doi.org/10.1016/j.immuni.2021.09.016 (2021).

Schafflick, D. et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. Neurosci. 24, 1225–1234 (2021).

Article  CAS  PubMed  Google Scholar 

Niu, C. et al. Identification of hematopoietic stem cells residing in the meninges of adult mice at steady state. Cell Rep. 41, 111592 (2022).

Article  CAS  PubMed  Google Scholar 

Ringstad, G. & Eide, P. K. Molecular trans-dural efflux to skull bone marrow in humans with cerebrospinal fluid disorders. Brain https://doi.org/10.1093/brain/awab388 (2021).

Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

Article  CAS  PubMed  Google Scholar 

Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, X. et al. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589, 591–596 (2021).

Article  CAS  PubMed  Google Scholar 

Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55 (1999).

Article  CAS  PubMed  Google Scholar 

Russo, M. V., Latour, L. L. & McGavern, D. B. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat. Immunol. 19, 442–452 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mastorakos, P. et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat. Neurosci. 24, 245–258 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salvador, A. F. M. & Kipnis, J. Immune response after central nervous system injury. Semin. Immunol. https://doi.org/10.1016/j.smim.2022.101629 (2022).

Courties, G. et al. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ. Res. 116, 407–417 (2015).

Article  CAS  PubMed  Google Scholar 

Hadjikhani, N. et al. Extra‐axial inflammatory signal in parameninges in migraine with visual aura. Ann. Neurol. 87, 939–949 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Klein, R. S. et al. Neuroinflammation during RNA viral infections. Annu. Rev. Immunol. 37, 73–95 (2019).

留言 (0)

沒有登入
gif