Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis

Flechsig Of Leipsic, P. Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet 158, 1027–1030 (1901).

Article  Google Scholar 

Spitzer, S. O. et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101, 459–471.e5 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H. & Götz, M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J. Neurosci. 28, 10434–10442 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang, S. H., Fukaya, M., Yang, J. K., Rothstein, J. D. & Bergles, D. E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68, 668–681 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viganò, F., Möbius, W., Götz, M. & Dimou, L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat. Neurosci. 16, 1370–1372 (2013).

Article  PubMed  Google Scholar 

Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Floriddia, E. M. et al. Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat. Commun. 11, 5860 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hilscher, M. M. et al. Spatial and temporal heterogeneity in the lineage progression of fine oligodendrocyte subtypes. BMC Biol. 20, 122 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandey, S. et al. Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 40, 111189 (2022).

Article  CAS  PubMed  Google Scholar 

Falcão, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Snaidero, N. et al. Myelin replacement triggered by single-cell demyelination in mouse cortex. Nat. Commun. 11, 4901 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith, K. J., Blakemore, W. F. & Mcdonald, W. I. Central remyelination restores secure conduction. Nature 280, 395–396 (1979).

Article  CAS  PubMed  Google Scholar 

Bacmeister, C. M. et al. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat. Neurosci. 23, 819–831 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bø, L., Vedeler, C. A., Nyland, H. I., Trapp, B. D. & Mørk, S. J. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62, 723–732 (2003).

Article  PubMed  Google Scholar 

Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005).

Article  PubMed  Google Scholar 

Peterson, J. W., Bö, L., Mörk, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

Article  CAS  PubMed  Google Scholar 

Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

Article  CAS  PubMed  Google Scholar 

Orthmann-Murphy, J. et al. Remyelination alters the pattern of myelin in the cerebral cortex. eLife 9, e56621 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Call, C. L. & Bergles, D. E. Cortical neurons exhibit diverse myelination patterns that scale between mouse brain regions and regenerate after demyelination. Nat. Commun. 12, 4767 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon 7, 205–209 (2013).

Article  CAS  Google Scholar 

Streich, L. et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nat. Methods 18, 1253–1258 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14, 388–390 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, T., Wang, T. & Xu, C. Three-photon neuronal imaging in deep mouse brain. Optica 7, 947–960 (2020).

Article  CAS  Google Scholar 

Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Squier, J., Muller, M., Brakenhoff, G. & Wilson, K. R. Third harmonic generation microscopy. Opt. Express 3, 315–324 (1998).

Article  CAS  PubMed  Google Scholar 

Débarre, D. et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3, 47–53 (2006).

Article  PubMed  Google Scholar 

Yildirim, M., Sugihara, H., So, P. T. C. & Sur, M. Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy. Nat. Commun. 10, 177 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Schain, A. J., Hill, R. A. & Grutzendler, J. Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nat. Med. 20, 443–449 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paxinos, G. & Franklin, K. B. J. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates (Academic Press, 2019).

Chapman, T. W., Olveda, G. E., Bame, X., Pereira, E. & Hill, R. A. Oligodendrocyte death initiates synchronous remyelination to restore cortical myelin patterns in mice. Nat. Neurosci. 26, 555–569 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yildirim, M. et al. Quantitative third-harmonic generation imaging of mouse visual cortex areas reveals correlations between functional maps and structural substrates. Biomed. Opt. Express 11, 5650–5673 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Podgorski, K. & Ranganathan, G. Brain heating induced by near-infrared lasers during multiphoton microscopy. J. Neurophysiol. 116, 1012–1023 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, T. et al. Quantitative analysis of 1300 nm three-photon calcium imaging in the mouse brain. eLife 9, e53205 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunomura, A. et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci. 19, 1959–1964 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arganda-Carreras, I. et al. Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).

Article  CAS  PubMed  Google Scholar 

Schager, B. & Brown, C. E. Susceptibility to capillary plugging can predict brain region specific vessel loss with aging. J. Cereb. Blood Flow. Metab. 40, 2475–2490 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif