Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage

Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75, 762–777 (2012).

Article  CAS  PubMed  Google Scholar 

Watts, M. E., Pocock, R. & Claudianos, C. Brain energy and oxygen metabolism: emerging role in normal function and disease. Front. Mol. Neurosci. 11, 216 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Bélanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte–neuron metabolic cooperation. Cell Metab. 14, 724–738 (2011).

Article  PubMed  Google Scholar 

Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).

Article  CAS  PubMed  Google Scholar 

Yellen, G. Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J. Cell Biol. 217, 2235–2246 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–1045 (2019).

Article  CAS  PubMed  Google Scholar 

Cheng, X. T., Huang, N. & Sheng, Z. H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110, 1899–1923 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, R. Z., Jiang, S., Zhang, L. & Yu, Z. B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med. 44, 3–15 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dionísio, P. A., Amaral, J. D. & Rodrigues, C. M. P. Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res. Rev. 67, 101263 (2021).

Article  PubMed  Google Scholar 

Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 11, 747–752 (2009).

Article  CAS  PubMed  Google Scholar 

Rodriguez-Rodriguez, P., Fernandez, E. & Bolaños, J. P. Underestimation of the pentose-phosphate pathway in intact primary neurons as revealed by metabolic flux analysis. J. Cereb. Blood Flow Metab. 33, 1843–1845 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X. et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol. Cell 61, 705–719 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodic, S. & Vincent, M. D. Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype. Int. J. Cancer 142, 440–448 (2018).

Article  CAS  PubMed  Google Scholar 

Hsu, P. P. & Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell 134, 703–707 (2008).

Article  CAS  PubMed  Google Scholar 

Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

Article  Google Scholar 

Nelson, D. L., Lehninger, A. L. & Cox, M. M. Lehninger Principles of Biochemistry (Macmillan, 2008).

Craig, A. M., Jareb, M. & Banker, G. Neuronal polarity. Curr. Opin. Neurobiol. 2, 602–606 (1992).

Article  CAS  PubMed  Google Scholar 

Namba, T. et al. Extracellular and intracellular signaling for neuronal polarity. Physiol. Rev. 95, 995–1024 (2015).

Article  CAS  PubMed  Google Scholar 

Zhang, J. et al. Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat. Protoc. 7, 1068–1085 (2012).

Article  CAS  PubMed  Google Scholar 

Lobas, M. A. et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10, 711 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beier, K. T. et al. Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature 549, 345–350 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baeza-Lehnert, F. et al. Non-canonical control of neuronal energy status by the Na+ pump. Cell Metab. 29, 668–680 (2019).

Article  CAS  PubMed  Google Scholar 

Jang, S. et al. Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron 90, 278–291 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Díaz-García, C. M. et al. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26, 361–374 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Ashrafi, G., Wu, Z., Farrell, R. J. & Ryan, T. A. GLUT4 mobilization supports energetic demands of active synapses. Neuron 93, 606–615 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koenig, J. B. et al. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight 5, e126506 (2019).

Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

San Martín, A. et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS ONE 8, e57712 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Mächler, P. et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102 (2016).

Article  PubMed  Google Scholar 

Olenchock, B. A. & Vander Heiden, M. G. Pyruvate as a pivot point for oncogene-induced senescence. Cell 153, 1429–1430 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

Article  CAS  PubMed  Google Scholar 

Israelsen, W. J. & Vander Heiden, M. G. Pyruvate kinase: function, regulation and role in cancer. Semin. Cell Dev. Biol. 43, 43–51 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

David, C. J., Chen, M., Assanah, M., Canoll, P. & Manley, J. L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010).

Article  CAS  PubMed  Google Scholar 

Dayton, T. L., Jacks, T. & Vander Heiden, M. G. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 17, 1721–1730 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

Article  PubMed  Google Scholar 

Giasson, B. I. et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290, 985–989 (2000).

Article 

留言 (0)

沒有登入
gif