Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpoint

Hoi CP, Ho YP, Baum L, Chow AHL. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phyther Res. 2010;24:1538–42.

Article  CAS  Google Scholar 

Lin YR, Chen HH, Ko CH, Chan MH. Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. Eur J Pharmacol. 2006;537:64–9.

Article  CAS  PubMed  Google Scholar 

Talarek S, Listos J, Barreca D, Tellone E, Sureda A, Nabavi SF, et al. Neuroprotective effects of honokiol: from chemistry to medicine. BioFactors. 2017;43:760–9.

Article  CAS  PubMed  Google Scholar 

Akagi M, Matsui N, Akae H, Hirashima N, Fukuishi N, Fukuyama Y, et al. Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer’s disease. J Pharmacol Sci. 2015;127:155–63.

Article  CAS  PubMed  Google Scholar 

Kubo M. Search of neurotrophin-mimic natural products for prevention and treatment of neurodegenerative disease. Yakugaku Zasshi. 2015;135:1147–52.

Article  CAS  PubMed  Google Scholar 

Zhu S, Liu F, Zhang R, Xiong Z, Zhang Q, Hao L, et al. Neuroprotective potency of neolignans in Magnolia officinalis cortex against brain disorders. Front Pharmacol. 2022;13:857449.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esumi T, Makado G, Zhai H, Shimizu Y, Mitsumoto Y, Fukuyama Y. Efficient synthesis and structure-activity relationship of honokiol, a neurotrophic biphenyl-type neolignan. Bioorg Med Chem Lett. 2004;14:2621–5.

Article  CAS  PubMed  Google Scholar 

Kong Z-L, Tzeng S-C, Liu Y-C. Cytotoxic neolignans: an SAR study. Bioorg Med Chem Lett. 2005;15:163–6.

Article  CAS  PubMed  Google Scholar 

Aman MM, Mahmoud A, Sinha AC. Chapter 14 - Postoperative Analgesia in Morbid Obesity: An Overview of Multimodal Analgesia and Complimentary Therapies. In: Watson RR, Zibadi SBT-NM of P in the AP, editors. Academic Press; 2017. p. 171–80.

Woodbury A, Yu SP, Wei L, García P. Neuro-modulating effects of Honokiol: a review. Front Neurol. 2013;4:13.

Article  Google Scholar 

Lin YR, Chen HH, Lin YC, Ko CH, Chan MH. Antinociceptive actions of honokiol and magnolol on glutamatergic and inflammatory pain. J Biomed Sci. 2009. https://doi.org/10.1186/1423-0127-16-94.

Article  PubMed  PubMed Central  Google Scholar 

Tan Y, Yu H, Sun S, Gan S, Gong R, Jie MK, et al. Honokiol exerts protective effects on neural myelin sheaths after compressed spinal cord injury by inhibiting oligodendrocyte apoptosis through regulation of ER-mitochondrial interactions. J Spinal Cord Med. 2022;45:595–604.

Article  CAS  PubMed  Google Scholar 

Zhou Y, Tang J, Lan J, Zhang Y, Wang H, Chen Q, et al. Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis. Acta Pharm Sin B. 2023;13:577–97.

Article  CAS  PubMed  Google Scholar 

Chen HH, Chang PC, Chen C, Chan MH. Protective and therapeutic activity of honokiol in reversing motor deficits and neuronal degeneration in the mouse model of Parkinson’s disease. Pharmacol Reports. 2018;70:668–76.

Article  CAS  Google Scholar 

Hou M, Bao W, Gao Y, Chen J, Song G. Honokiol improves cognitive impairment in APP/PS1 mice through activating mitophagy and mitochondrial unfolded protein response. Chem Biol Interact. 2022;351:109741.

Article  CAS  PubMed  Google Scholar 

Qiang L-Q, Wang C-P, Wang F-M, Pan Y, Yi L-T, Zhang X, et al. Combined administration of the mixture of honokiol and magnolol and ginger oil evokes antidepressant-like synergism in rats. Arch Pharm Res. 2009;32:1281–92.

Article  CAS  PubMed  Google Scholar 

Hu H, Zhang X, Wang Y, Chen S. Honokiol inhibits arterial thrombosis through endothelial cell protection and stimulation of prostacyclin. Acta Pharmacol Sin. 2005;26:1063–8.

Article  CAS  PubMed  Google Scholar 

Amblard F, Delinsky D, Arbiser JL, Schinazi RF. Facile purification of honokiol and its antiviral and cytotoxic properties. J Med Chem. 2006;49:3426–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim Y-S, Lee J-Y, Park J, Hwang W, Lee J, Park D. Synthesis and microbiological evaluation of honokiol derivatives as new antimicrobial agents. Arch Pharm Res. 2010;33:61–5.

Article  CAS  PubMed  Google Scholar 

Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, et al. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem. 2003;278:35501–7.

Article  CAS  PubMed  Google Scholar 

Ho KY, Tsai CC, Chen CP, Huang JS, Lin CC. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res. 2001;15:139–41.

Article  CAS  PubMed  Google Scholar 

Kuribara H, Kishi E, Hattori N, Yuzurihara M, Maruyama Y. Application of the elevated plus-maze test in mice for evaluation of the content of honokiol in water extracts of magnolia. Phytother Res. 1999;13:593–6.

Article  CAS  PubMed  Google Scholar 

Liou K-T, Shen Y-C, Chen C-F, Tsao C-M, Tsai S-K. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur J Pharmacol. 2003;475:19–27.

Article  CAS  PubMed  Google Scholar 

Gertsch J, Anavi-Goffer S. Methylhonokiol attenuates neuroinflammation: a role for cannabinoid receptors? J Neuroinflamm. 2012. https://doi.org/10.1186/1742-2094-9-135.

Article  Google Scholar 

Kuribara H, Kishi E, Kimura M, Weintraub ST, Maruyama Y. Comparative assessment of the anxiolytic-like activities of honokiol and derivatives. Pharmacol Biochem Behav. 2000;67:597–601.

Article  CAS  PubMed  Google Scholar 

Tripathi S, Chan MH, Chen C. An expedient synthesis of honokiol and its analogues as potential neuropreventive agents. Bioorganic Med Chem Lett. 2012;22:216–21.

Article  CAS  Google Scholar 

Shih HC, Hwang TL, Chen HC, Kuo PC, Lee EJ, Lee KH, et al. Honokiol dimers and magnolol derivatives with new carbon skeletons from the roots of magnolia officinalis and their inhibitory effects on superoxide anion generation and elastase release. PLoS One. 2013;8:e59502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rycek L, Puthenkalam R, Schnürch M, Ernst M, Mihovilovic MD. Metal-assisted synthesis of unsymmetrical magnolol and honokiol analogs and their biological assessment as GABAA receptor ligands. Bioorganic Med Chem Lett. 2015;25:400–3.

Article  CAS  Google Scholar 

Zhang B, Yu H, Lu W, Yu B, Liu L, Jia W, et al. Four new honokiol derivatives from the stem bark of Magnolia officinalis and their anticholinesterase activities. Phytochem Lett. 2019;29:195–8.

Article  CAS  Google Scholar 

Taferner B, Schuehly W, Huefner A, Baburin I, Wiesner K, Ecker GF, et al. Modulation of GABAA-receptors by Honokiol and derivatives: subtype selectivity and structure-activity relationship. J Med Chem. 2011;54:5349–61.

Article  CAS  PubMed  Google Scholar 

Rauf A, Olatunde A, Imran M, Alhumaydhi FA, Aljohani ASM, Khan SA, et al. Honokiol: a review of its pharmacological potential and therapeutic insights. Phytomedicine. 2021;90: 153647. https://doi.org/10.1016/j.phymed.2021.153647.

Article  CAS  PubMed  Google Scholar 

Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94:651–715.

Article  CAS  PubMed  Google Scholar 

Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012;7:863–75.

Article  CAS  PubMed  Google Scholar 

Esumi T, Makado G, Zhai H, Shimizu Y, Mitsumoto Y, Fukuyama Y. Efficient synthesis and structure—activity relationship of honokiol, a neurotrophic biphenyl-type neolignan. Chem Inform. 2004. https://doi.org/10.1002/chin.200439189.

Article  Google Scholar 

Schenk D, Hagen M, Seubert P. Current progress in beta-amyloid immunotherapy. Curr Opin Immunol. 2004;16:599–606.

Article  CAS  PubMed  Google Scholar 

Seo S, Lee K-G, Shin J-S, Chung EK, Lee JY, Kim HJ, et al. 6′-O-Caffeoyldihydrosyringin isolated from Aster glehni suppresses lipopolysaccharide-induced iNOS, COX-2, TNF-α, IL-1β and IL-6 expression via NF-κB and AP-1 inactivation in RAW 264.7 macrophages. Bioorg Med Chem Lett. 2016;26:4592–8.

Article  CAS  PubMed  Google Scholar 

Bae J-Y, Lee D-S, Cho YK, Lee J-Y, Park J-H, Lee SH. Daphne jejudoensis attenuates LPS-induced inflammation by inhibiting TNF-α, IL-1β, IL-6, iNOS, and COX-2 expression in periodontal ligament cells. Pharmaceuticals. 2022;15:387.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif