Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.
Article PubMed PubMed Central Google Scholar
Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2:e141.
Article PubMed PubMed Central Google Scholar
Marwaha S, Johnson S. Schizophrenia and employment—a review. Soc Psychiatry Psychiatr Epidemiol. 2004;39:337–49.
Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ. Genetic risk for schizophrenia: convergence on synapticpathways involved in plasticity. Biol Psychiatry. 2015;77:52–8.
Article CAS PubMed Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.
Article PubMed Central Google Scholar
Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, et al. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry. 2004;55:225–33.
Article CAS PubMed Google Scholar
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018;265:25–38.
Article CAS PubMed Google Scholar
Cao L, Xu CB, Zhang Y, Cao YX, Edvinsson L. Secondhand cigarette smoke exposure causes upregulation of cerebrovascular 5-HT(1) (B) receptors via the Raf/ERK/MAPK pathway in rats. Acta Physiol. 2013;207:183–93.
Lin SL, Setya S, Johnson-Farley NN, Cowen DS. Differential coupling of 5-HT(1) receptors to G proteins of the G(i) family. Br J Pharmacol. 2002;136:1072–8.
Article CAS PubMed PubMed Central Google Scholar
Mendez J, Kadia TM, Somayazula RK, El-Badawi KI, Cowen DS. Differential coupling of serotonin 5-HT1A and 5-HT1B receptors to activation of ERK2 and inhibition of adenylyl cyclase in transfected CHO cells. J Neurochem. 1999;73:162–8.
Article CAS PubMed Google Scholar
Nikolaienko O, Eriksen MS, Patil S, Bito H, Bramham CR. Stimulus-evoked ERK-dependent phosphorylation of activity-regulated cytoskeleton-associated protein (Arc) regulates its neuronal subcellular localization. Neuroscience. 2017;360:68–80.
Article CAS PubMed Google Scholar
Panja D, Dagyte G, Bidinosti M, Wibrand K, Kristiansen AM, Sonenberg N, et al. Novel translational control in Arc-dependent long term potentiation consolidation in vivo. J Biol Chem. 2009;284:31498–511.
Article CAS PubMed PubMed Central Google Scholar
Huang F, Chotiner JK, Steward O. Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J Neurosci. 2007;27:9054–67.
Article CAS PubMed PubMed Central Google Scholar
Chen X, Jia B, Araki Y, Liu B, Ye F, Huganir R, et al. Arc weakens synapses by dispersing AMPA receptors from postsynaptic density via modulating PSD phase separation. Cell Res. 2022;32:914–30.
Article CAS PubMed PubMed Central Google Scholar
Goo B, Sanstrum BJ, Holden D, Yu Y, James NG. Arc/Arg3.1 has an activity-regulated interaction with PICK1 that results in altered spatial dynamics. Sci Rep. 2018;8:14675.
Article PubMed PubMed Central Google Scholar
Moyer CE, Shelton MA, Sweet RA. Dendritic spine alterations in schizophrenia. Neurosci Lett. 2015;601:46–53.
Article CAS PubMed Google Scholar
Wysokinski A, Kozlowska E, Szczepocka E, Lucka A, Agier J, Brzezinska-Blaszczyk E, et al. Expression of dopamine D(1–4) and serotonin 5-HT(1A–3A) receptors in blood mononuclear cells in schizophrenia. Front Psychiatry. 2021;12:645081.
Article PubMed PubMed Central Google Scholar
Wu X, Yan Q, Liu L, Xue X, Yao W, Li X, et al. Domesticated HERV-W env contributes to the activation of the small conductance Ca(2+)-activated K(+) type 2 channels via decreased 5-HT4 receptor in recent-onset schizophrenia. Virol Sin. 2023;38:9–22.
Article CAS PubMed Google Scholar
Suzuki T, Iwata N, Kitamura Y, Kitajima T, Yamanouchi Y, Ikeda M, et al. Association of a haplotype in the serotonin 5-HT4 receptor gene (HTR4) with Japanese schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2003;121B:7–13.
Article CAS PubMed Google Scholar
de Bruin NM, Kruse CG. 5-HT6 receptor antagonists: potential efficacy for the treatment of cognitive impairment in schizophrenia. Curr Pharm Des. 2015;21:3739–59.
Bannert N, Kurth R. Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA. 2004;101(Suppl 2):14572–9.
Article CAS PubMed PubMed Central Google Scholar
Jakobsson J, Vincendeau M. SnapShot: Human endogenous retroviruses. Cell. 2022;185:400.
Article CAS PubMed Google Scholar
Mao J, Zhang Q, Cong YS. Human endogenous retroviruses in development and disease. Comput Struct Biotechnol J. 2021;19:5978–86.
Article CAS PubMed PubMed Central Google Scholar
Larsson E, Andersson G. Beneficial role of human endogenous retroviruses: facts and hypotheses. Scand J Immunol. 1998;48:329–38.
Article CAS PubMed Google Scholar
Canli T. A model of human endogenous retrovirus (HERV) activation in mental health and illness. Med Hypotheses. 2019;133:109404.
Article CAS PubMed Google Scholar
Liu C, Liu L, Wang X, Liu Y, Wang M, Zhu F. HBV X Protein induces overexpression of HERV-W env through NF-kappaB in HepG2 cells. Virus Genes. 2017;53:797–806.
Article CAS PubMed Google Scholar
van der Kuyl AC. HIV infection and HERV expression: a review. Retrovirology. 2012;9:6.
Article PubMed PubMed Central Google Scholar
Liu C, Chen Y, Li S, Yu H, Zeng J, Wang X, et al. Activation of elements in HERV-W family by caffeine and aspirin. Virus Genes. 2013;47:219–27.
Article CAS PubMed Google Scholar
Gao Y, Yu XF, Chen T. Human endogenous retroviruses in cancer: expression, regulation and function. Oncol Lett. 2021;21:121.
Article CAS PubMed Google Scholar
Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000;403:785–9.
Article CAS PubMed Google Scholar
Zhou Y, Liu L, Liu Y, Zhou P, Yan Q, Yu H, et al. Implication of human endogenous retrovirus W family envelope in hepatocellular carcinoma promotes MEK/ERK-mediated metastatic invasiveness and doxorubicin resistance. Cell Death Discov. 2021;7:177.
Article CAS PubMed PubMed Central Google Scholar
Yu HL, Zhao ZK, Zhu F. The role of human endogenous retroviral long terminal repeat sequences in human cancer (Review). Int J Mol Med. 2013;32:755–62.
Article CAS PubMed Google Scholar
Perron H, Lazarini F, Ruprecht K, Pechoux-Longin C, Seilhean D, Sazdovitch V, et al. Human endogenous retrovirus (HERV)-W ENV and GAG proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J Neurovirol. 2005;11:23–33.
Article CAS PubMed Google Scholar
Perron H, Mekaoui L, Bernard C, Veas F, Stefas I, Leboyer M. Endogenous retrovirus type W GAG and envelope protein antigenemia in serum of schizophrenic patients. Biol Psychiatry. 2008;64:1019–23.
Article CAS PubMed Google Scholar
Huang W, Li S, Hu Y, Yu H, Luo F, Zhang Q, et al. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr Bull. 2011;37:988–1000.
Xia YR, Wei XC, Li WS, Yan QJ, Wu XL, Yao W, et al. CPEB1, a novel risk gene in recent-onset schizophrenia, contributes to mitochondrial complex I defect caused by a defective provirus ERVWE1. World J Psychiatry. 2021;11:1075–94.
Comments (0)