Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Trans Res. 2018;191:15–28. https://doi.org/10.1016/j.trsl.2017.10.001.
GBD 2019. Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors,1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol, 2021; 20: 795-820. https://doi.org/10.1016/S1474-4422(21)00252-0.
Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors:2020 and beyond. J Am Coll Cardiol. 2019;74:2529–32. https://doi.org/10.1016/j.jacc.2019.10.009.
WHO. Cardiovascular diseases (CVDs) [EB/OL]. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 2015-05-04.
Niccoli G, Scalone G, Lerman A, Crea F. Coronary microvascular obstruction in acute myocardial infarction. Eur Heart J. 2016;37:1024–33. https://doi.org/10.1093/eurheartj/ehv484.
Bowler MW. Conformational dynamics in phosphoglycerate kinase, an open and shut case? FEBS letters. 2013;587:1878–83. https://doi.org/10.1016/j.febslet.2013.05.012.
Article CAS PubMed Google Scholar
McCarrey JR, Thomas K. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature. 1987;326:501–5. https://doi.org/10.1038/326501a0.
Article CAS PubMed Google Scholar
Wang S, Jiang B, Zhang T, et al. Insulin and mTOR pathway regulate HDAC3-mediated deacetylation and activation of PGK1. PLoS Biol. 2015;13:1–27. https://doi.org/10.1371/journal.pbio.1002243.
Hu H, Zhu W, Qin J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology. 2017;65:515–28. https://doi.org/10.1002/hep.28887.
Article CAS PubMed Google Scholar
Nie H, Ju H, Fan J, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun. 2020;11:1–14. https://doi.org/10.1038/s41467-019-13601-8.
Tan Z, Xie N, Cui H, et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol. 2015;194:6082–9. https://doi.org/10.4049/jimmunol.1402469.
Article CAS PubMed Google Scholar
Jin KY, Gao S, Yang PH, et al. Single-cell RNA sequencing reveals the temporal diversity and dynamics of cardiac immunity after myocardial infarction. Small Methods. 2022;6:1–15. https://doi.org/10.1002/smtd.202100752.
Ngoi N, Eu J, Hirpara J, et al. Targeting cell metabolism as cancer therapy. Antioxidants Redox Signal. 2020;32:285–308. https://doi.org/10.1089/ars.2019.7947.
Glatz JFC, Zuurbier CJ, Larsen TS. Targeting metabolic pathways to treat cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165879. https://doi.org/10.1016/j.bbadis.2020.165879.
Yang Y, Shao M, Cheng W, et al. A pharmacological review of tanshinones, naturally occurring monomers from Salvia miltiorrhiza for the treatment of cardiovascular diseases. Oxid Med Cell Longev. 2023:3801908. https://doi.org/10.1155/2023/3801908.
Gao S, Liu Z, Li H, Little PJ, Liu P, Xu S. Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis. 2012;220:3–10. https://doi.org/10.1016/j.atherosclerosis.2011.06.041.
Article CAS PubMed Google Scholar
Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related disease. Drug Des Devel Ther. 2020;14:4735–48. https://doi.org/10.2147/DDDT.S266911.
Article PubMed PubMed Central Google Scholar
Fang Y, Duan C, Chen S, et al. Tanshinone-IIA inhibits myocardial infarct via decreasing of the mitochondrial apoptotic signaling pathway in myocardiocytes. Int J Mol Med. 2021;48:1–11. https://doi.org/10.3892/ijmm.2021.4991.
Li Q, Shen L, Wang Z, Jiang HP, Liu LX. Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother. 2016;84:106–14. https://doi.org/10.1016/j.biopha.2016.09.014.
Article CAS PubMed Google Scholar
Gao S, Wang Y, Li D, et al. Tanshinone IIA alleviates inflammatory response and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells. Inflammation. 2019;42:264–75. https://doi.org/10.1007/s10753-018-0891-7.
Fan G, Jiang X, Wu X, et al. Anti-inflammatory activity of tanshinone IIA in LPS-stimulated RAW264.7 Macrophages via miRNAs and TLR4-NF-κB Pathway. Inflammation. 2016;39:375–84. https://doi.org/10.1007/s10753-015-0259-1.
Gao E, Lei Y, Shang X, et al. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res. 2010;107:1445–53. https://doi.org/10.1161/CIRCRESAHA.110.223925.
Article CAS PubMed PubMed Central Google Scholar
Chen J, Cao W, Aare P, et al. Amelioration of cardiac dysfunction and ventricular remodeling after myocardial infarction by danhong injection are critically contributed by anti-TGF-β-mediated fibrosis and angiogenesis mechanisms. J Ethnopharmacol. 2016;194:559–70. https://doi.org/10.1016/j.jep.2016.10.025.
Livnat-Levanon N, Glickman MH. Ubiquitin-proteasome system and mitochondria-reciprocity. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mech. 2011;1809:80–7. https://doi.org/10.1016/j.bbagrm.2010.07.005.
Arduino DM, Perocchi F. Pharmacological modulation of mitochondrial calcium homeostasis. J Physiol. 2018;596:2717–33. https://doi.org/10.1113/JP274959.
Article CAS PubMed PubMed Central Google Scholar
Ham PB, Raju R. Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol. 2017;157:92–116. https://doi.org/10.1016/j.pneurobio.2016.06.006.
Article CAS PubMed Google Scholar
Bernardi P, Rasola A, Forte M, Lippe G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 2015;95:1111–55. https://doi.org/10.1152/physrev.00001.2015.
Article PubMed PubMed Central Google Scholar
Jia D, Chen S, Bai P, et al. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction. Circulation. 2022;145:1542–56. https://doi.org/10.1161/CIRCULATIONAHA.121.057549.
Article CAS PubMed Google Scholar
Kieler M, Hofmann M, Schabbauer G. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization. FEBS J. 2021;288:3694–714. https://doi.org/10.1111/febs.15715.
Article CAS PubMed PubMed Central Google Scholar
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1βthrough HIF-1α. Nature. 2013;496:238–42. https://doi.org/10.1038/nature11986.
Article CAS PubMed PubMed Central Google Scholar
Jan Y, Lai T, Yang C, Lin Y, Hsiao M. Adenylate kinase 4 modulates oxidative stress and stabilizes HIF-1α to drive lung adenocarcinoma metastasis. J Hematol Oncol. 2019;12:1–36. https://doi.org/10.1101/196857.
Wujak M, Veith C, Wu CY, et al. Adenylate kinase 4-a key regulator of proliferation and metabolic shift in human pulmonary arterial smooth muscle cells via Akt and HIF-1α signaling pathways. Int J Mol Sci. 2021;22:1–20. https://doi.org/10.3390/ijms221910371.
Chin WY, He CY, Chow TW, Yu QY, Lai LC, Miaw SC. Adenylate kinase 4 promotes inflammatory gene expression Hif1α and AMPK in macrophages. Front Immunol. 2021;12:630318. https://doi.org/10.3389/fimmu.2021.630318.
Chen B, Brickshawana A, Frangogiannis NG. The functional heterogeneity of resident cardiac macrophages in myocardial injury CCR2(+) cells promote inflammation, whereas CCR2(-) cells protect. Circulation Res. 2019;124(2):183–5. https://doi.org/10.1161/CIRCRESAHA.118.314357.
Article CAS PubMed Google Scholar
Bajpai G, Bredemeyer A, Li W, et al. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circul Res. 2019;124(2):263–78. https://doi.org/10.1161/CIRCRESAHA.118.314028.
Hilgendorf I, Gerhardt L, Tan T, et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circul Res. 2014;114(10):1611–22. https://doi.org/10.1161/CIRCRESAHA.114.303204.
Patel B, Ismahil MA, Hamid T, et al. Mononuclear phagocytes are dispensable for cardiac remodeling in established pressure-overload heart failure. PloS one. 2017;12(1): e0170781. https://doi.org/10.1371/journal.pone.0170781.
Dutta P, Sager HB, Stengel KR, et al. Myocardial infarction activates CCR2(+) hematopoietic stem and progenitor cells. Cell Stem Cell. 2015;16(5):477–87. https://doi.org/10.1016/j.stem.2015.04.008.
Article CAS PubMed PubMed Central Google Scholar
Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47. https://doi.org/10.1084/jem.20070885.
Article CAS PubMed PubMed Central Google Scholar
Yap J, Irei J, Lozano-Gerona J, Vanapruks S, Bishop T, Boisvert WA. Macrophages in cardiac remodelling after myocardial infarction. Nat Rev Cardiol. 2023;20:373–85. https://doi.org/10.1038/s41569-022-00823-5.
Lin S, Zhang A, Yuan L, et al. Targeting parvalbumin promotes M2 macrophage polarization and energy expenditure in mice. Nat Commun. 2022;3301:1–15. https://doi.org/10.1038/s41467-022-30757-y.
Comments (0)