Yusuf S, Joseph P, Rangarajan S, et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. 2020;395(10226):795–808.
Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340(2):115-126.
Herrington W, Lacey B, Sherliker P, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–46.
Article CAS PubMed Google Scholar
Xu H, Jiang J, Chen W, et al. Vascular Macrophages in Atherosclerosis. J Immunol Res. 2019;2019:1–14.
Bäck M, Yurdagul A, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nature Rev Cardiol. 2019;16(7):389–406. https://doi.org/10.1038/s41569-019-0169-2.
Ali AH, Younis N, Abdallah R, et al. Lipid-lowering therapies for atherosclerosis: statins, fibrates, ezetimibe and PCSK9 monoclonal antibodies. Current Med Chem. 2021;28(36):7427–45.
Poznyak AV, Wu W-K, Melnichenko AA, et al. Signaling pathways and key genes involved in regulation of foam cell formation in atherosclerosis. Cells. 2020;9(3):584.
Article CAS PubMed PubMed Central Google Scholar
Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25. https://doi.org/10.1038/nature10146.
Prilepskii AY, Serov NS, Kladko DV, et al. Nanoparticle-based approaches towards the treatment of atherosclerosis. Pharmaceutics. 2020;12(11):1056.
Article CAS PubMed PubMed Central Google Scholar
Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. British J Radiol. 2015;88(1054):20150207.
Flores AM, Ye J, Jarr K-U, et al. Nanoparticle therapy for vascular diseases. Arteriosclerosis, Thrombosis Vasc Biol. 2019;39(4):635–46.
Lobatto ME, Fuster V, Fayad ZA, et al. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discovery. 2011;10(11):835–52. https://doi.org/10.1038/nrd3578.
DiStasio N, Lehoux S, Khademhosseini A, et al. The multifaceted uses and therapeutic advantages of nanoparticles for atherosclerosis research. Materials. 2018;11(5):754.
Article PubMed PubMed Central Google Scholar
Behera S, Pramanik K, Nayak M. Recent advancement in the treatment of cardiovascular diseases: conventional therapy to nanotechnology. Current Pharmaceut Design. 2015;21(30):4479–97.
Shen Y, Liang L, Zhang S, et al. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale. 2018;10(4):1622–30.
Article CAS PubMed Google Scholar
Leal BH, Velasco B, Cambón A, et al. Combined therapeutics for atherosclerosis treatment using polymeric nanovectors. Pharmaceutics. 2022;14(2):258.
Article CAS PubMed PubMed Central Google Scholar
Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 2020;11(1):2622. https://doi.org/10.1038/s41467-020-16439-7.
Jiang C, Qi Z, Tang Y, et al. Rational design of lovastatin-loaded spherical reconstituted high density lipoprotein for efficient and safe anti-atherosclerotic therapy. Mol Pharmaceut. 2019;16(7):3284–91.
Wei B, Li Y, Ao M, et al. Ganglioside GM3-functionalized reconstituted high-density lipoprotein (GM3-rHDL) as a novel nanocarrier enhances antiatherosclerotic efficacy of statins in apoE−/− C57BL/6 Mice. Pharmaceutics. 2022;14(11):2534.
Article CAS PubMed PubMed Central Google Scholar
Jiang C, Qi Z, He W, et al. Dynamically enhancing plaque targeting via a positive feedback loop using multifunctional biomimetic nanoparticles for plaque regression. J Controlled Release. 2019;308:71–85.
Sun Y, Chen L, Zhao S, et al. Effects of nanoparticle-mediated delivery of pitavastatin on atherosclerotic plaques in ApoE-knockout mice and THP-1-derived macrophages. Exp Ther Med. 2020;19(6):3787–97.
CAS PubMed PubMed Central Google Scholar
Rakshit M, Darwitan A, Muktabar A, et al. Anti-inflammatory potential of simvastatin loaded nanoliposomes in 2D and 3D foam cell models. Nanomed: Nanotechnol, Biol Med. 2021;37:102434.
Imanparast F, Faramarzi MA, Vatannejad A, et al. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs. Microvasc Res. 2017;112:14–9.
Article CAS PubMed Google Scholar
Pham LM, Kim E-C, Ou W, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269:120677.
Article CAS PubMed Google Scholar
Chen L, Wang C, Wu Y. Cholesterol (Blood lipid) lowering potential of Rosuvastatin chitosan nanoparticles for atherosclerosis: preclinical study in rabbit model. Acta Biochim Pol. 2020;67(4):495–9.
Saraogi GK, Tholiya S, Mishra Y, et al. Formulation development and evaluation of pravastatin-loaded nanogel for hyperlipidemia management. Gels. 2022;8(2):81.
Article CAS PubMed PubMed Central Google Scholar
du Toit LC, Hulisani Demana P, Essop CY. A nano-enabled biotinylated anti-LDL theranostic system to modulate systemic LDL cholesterol. Int J Pharmaceut. 2022;628:122258.
Chen F, Chen J, Han C, et al. Theranostics of atherosclerosis by the indole molecule-templated self-assembly of probucol nanoparticles. J Mater Chem B. 2021;9(20):4134–42.
Article CAS PubMed Google Scholar
Liang X, Li H, Zhang A, et al. Red blood cell biomimetic nanoparticle with anti-inflammatory, anti-oxidative and hypolipidemia effect ameliorated atherosclerosis therapy. Nanomed: Nanotechnol Biol Med. 2022;41:102519.
Chen L, Yang J, Fu X, et al. A targeting mesoporous dopamine nanodrug platform with NIR responsiveness for atherosclerosis improvement. Biomater Adv. 2022;136:212775.
Article CAS PubMed Google Scholar
Fu X, Yu X, Jiang J, et al. Small molecule-assisted assembly of multifunctional ceria nanozymes for synergistic treatment of atherosclerosis. Nat Commun. 2022;13(1):6528. https://doi.org/10.1038/s41467-022-34248-y.
Bulgarelli A, Martins Dias AA, Caramelli B, et al. Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits. J Cardiovasc Pharmacol. 2012;59(4):308–14. https://doi.org/10.1097/FJC.0b013e318241c385.
You S, Guo X, Xue X, et al. PCSK9 Hapten multicopy displayed onto carrier protein nanoparticle: an antiatherosclerosis vaccine. ACS Biomater Sci Eng. 2019;5(9):4263–71.
Article CAS PubMed Google Scholar
Satny M, Hubacek JA, Vrablik M. Statins and inflammation. Curr Atheroscler Rep. 2021;23(12):80. https://doi.org/10.1007/s11883-021-00977-6.
Valanti E, Tsompanidis A, Sanoudou D. Pharmacogenomics in the development and characterization of atheroprotective drugs. Methods Mol Biol. 2014;1175:259–300. https://doi.org/10.1007/978-1-4939-0956-8_11.
Duivenvoorden R, Tang J, Cormode DP, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5(1):3065. https://doi.org/10.1038/ncomms4065.
Koga J-i, Matoba T, Egashira K. Anti-inflammatory nanoparticle for prevention of atherosclerotic vascular diseases. J Atherosclerosis Thrombosis. 2016;23(7):757–65.
Roberts WC. The rule of 5 and the rule of 7 in lipid-lowering by statin drugs. Am J Cardiol. 1997;80(1):106–7.
Article CAS PubMed Google Scholar
Laufs U, Scharnagl H, März W. Statin intolerance. Curr Opin Lipidol. 2015;26(6):492–501.
Article CAS PubMed Google Scholar
Nenna A, Nappi F, Larobina D, et al. Polymers and nanoparticles for statin delivery: current use and future perspectives in cardiovascular disease. Polymers. 2021;13(5):711.
Comments (0)