Regulatory T Cells in Pathological Cardiac Hypertrophy: Mechanisms and Therapeutic Potential

Shimizu I. Minamino T Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Da Q, Cao S, et al. HINT1 (histidine triad nucleotide-binding protein 1) attenuates cardiac hypertrophy via suppressing HOXA5 (Homeobox A5) expression. Circulation. 2021;144:638–54.

Article  CAS  PubMed  Google Scholar 

Marian AJ. Braunwald E Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121:749–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura M. Sadoshima J Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407.

Article  CAS  PubMed  Google Scholar 

Backs J, Backs T, Neef S, et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A. 2009;106:2342–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee CF, Chavez JD, Garcia-Menendez L, et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation. 2016;134:883–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horton JL, Martin OJ, Lai L, et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight. 2016;2(1):e84897.

Frieler RA. Mortensen RM Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation. 2015;131:1019–30.

Article  PubMed  PubMed Central  Google Scholar 

Zhou L, Miao K, Yin B, et al. Cardioprotective role of myeloid-derived suppressor cells in heart failure. Circulation. 2018;138:181–97.

Article  CAS  PubMed  Google Scholar 

Raphael I, Nalawade S, Eagar TN, et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74:5–17.

Article  CAS  PubMed  Google Scholar 

Hirahara K. Nakayama T CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol. 2016;28:163–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saxena V, Lakhan R, Iyyathurai J, et al. Mechanisms of exTreg induction. Eur J Immunol. 2021;51:1956–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuan R, Agrawal DK. Thankam FG Treg cells in atherosclerosis. Mol Biol Rep. 2021;48:4897–910.

Article  CAS  PubMed  Google Scholar 

Shackleton EG, Ali HY, Khan M, et al. Novel combinatorial approaches to tackle the immunosuppressive microenvironment of prostate cancer. Cancers (Basel). 2021;13(5):1145.

Gouirand V, Habrylo I, Rosenblum MD. Regulatory T cells and inflammatory mediators in autoimmune disease. J Invest Dermatol. 2021;142(3 Pt B):774–780.

Volfson-Sedletsky V, Jones AT, Hernandez-Escalante J, et al. Emerging therapeutic strategies to restore regulatory T cell control of islet autoimmunity in type 1 diabetes. Front Immunol. 2021;12:635767.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Sha J, Sun L, et al. Contribution of regulatory T cell methylation modifications to the pathogenesis of allergic airway diseases. J Immunol Res. 2021;2021:5590217.

Article  PubMed  PubMed Central  Google Scholar 

Demosthenous C, Sakellari I, Douka V, et al. The role of myeloid-derived suppressor cells (MDSCs) in graft-versus-host disease (GVHD). J Clin Med. 2021;10(10):2050.

Boldison J, Long AE, Aitken RJ, et al. Activated but functionally impaired memory Tregs are expanded in slow progressors to type 1 diabetes. Diabetologia. 2022;65:343–55.

Article  CAS  PubMed  Google Scholar 

Li CR, Deiro MF, Godebu E, et al. IL-7 uniquely maintains FoxP3(+) adaptive Treg cells that reverse diabetes in NOD mice via integrin-β7-dependent localization. J Autoimmun. 2011;37:217–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mhanna V, Fourcade G, Barennes P, et al. Impaired activated/memory regulatory T cell clonal expansion instigates diabetes in NOD mice. Diabetes. 2021;70:976–85.

Article  CAS  PubMed  Google Scholar 

Zhou X, Bailey-Bucktrout SL, Jeker LT, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10:1000–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee S, Bartlett B, Dwivedi G. Adaptive immune responses in human atherosclerosis. Int J Mol Sci. 2020;21(23):9322.

He X, Liang B. Gu N Th17/Treg imbalance and atherosclerosis. Dis Markers. 2020;2020:8821029.

Article  PubMed  PubMed Central  Google Scholar 

Ou HX, Guo BB, Liu Q, et al. Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin. 2018;39:1249–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal SS, Ismahil MA, Goel M, et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ Heart Fail. 2017;10:e003688.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng G, Bajpai G, Ma P, et al. CCL17 aggravates myocardial injury by suppressing recruitment of regulatory T cells. Circulation. 2022;145:765–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal SS, Ismahil MA, Goel M, et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation. 2019;139:206–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weirather J, Hofmann UD, Beyersdorf N, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115:55–67.

Article  CAS  PubMed  Google Scholar 

Kvakan H, Kleinewietfeld M, Qadri F, et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation. 2009;119:2904–12.

Article  CAS  PubMed  Google Scholar 

Oparil S, Acelajado MC, Bakris GL, et al. Hypertension Nat Rev Dis Primers. 2018;4:18014.

Article  PubMed  Google Scholar 

Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.

Article  CAS  PubMed  Google Scholar 

Brenes-Castro D, Castillo EC, Vázquez-Garza E, et al. Temporal frame of immune cell infiltration during heart failure establishment: lessons from animal models. Int J Mol Sci. 2018;19(12):3719.

Rai A, Narisawa M, Li P, et al. Adaptive immune disorders in hypertension and heart failure: focusing on T-cell subset activation and clinical implications. J Hypertens. 2020;38:1878–89.

Article  CAS  PubMed  Google Scholar 

Viel EC, Lemarié CA, Benkirane K, et al. Immune regulation and vascular inflammation in genetic hypertension. Am J Physiol Heart Circ Physiol. 2010;298:H938-944.

Article  CAS  PubMed  Google Scholar 

Cu

Comments (0)

No login
gif