Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59. https://doi.org/10.1016/S0140-6736(17)32154-2.
Cohen M, Gensini GF, Maritz F, et al. Prospective evaluation of clinical outcomes after acute ST-elevation myocardial infarction in patients who are ineligible for reperfusion therapy: preliminary results from the TETAMI registry and randomized trial. Circulation. 2003;108(16 Suppl 1):III14-21. https://doi.org/10.1161/01.CIR.0000091832.74006.1C.
Eagle KA, Goodman SG, Avezum A, et al. Practice variation and missed opportunities for reperfusion in ST-segment-elevation myocardial infarction: findings from the Global Registry of Acute Coronary Events (GRACE). Lancet. 2002;359(9304):373–7. https://doi.org/10.1016/S0140-6736(02)07595-5.
Srivastava S. Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. Clin Transl Med. 2016;5(1):25. https://doi.org/10.1186/s40169-016-0104-7.
Article PubMed PubMed Central Google Scholar
Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J. 2015;36(48):3404–12. https://doi.org/10.1093/eurheartj/ehv290.
Article CAS PubMed PubMed Central Google Scholar
Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev. 2007;25(3):235–60. https://doi.org/10.1111/j.1527-3466.2007.00018.x.
Article CAS PubMed PubMed Central Google Scholar
Pillai VB, Sundaresan NR, Kim G, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010;285(5):3133–44. https://doi.org/10.1074/jbc.M109.077271.
Article CAS PubMed Google Scholar
Zhang Y, Wang B, Fu X, et al. Exogenous NAD(+) administration significantly protects against myocardial ischemia/reperfusion injury in rat model. Am J Transl Res. 2016;8(8):3342–50.
CAS PubMed PubMed Central Google Scholar
Trammell SA, Yu L, Redpath P, Migaud ME, Brenner C. Nicotinamide riboside is a major NAD+ precursor vitamin in cow milk. J Nutr. 2016;146(5):957–63. https://doi.org/10.3945/jn.116.230078.
Article CAS PubMed PubMed Central Google Scholar
Trammell SA, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948. https://doi.org/10.1038/ncomms12948.
Article CAS PubMed PubMed Central Google Scholar
Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res. 2009;105(5):481–91. https://doi.org/10.1161/CIRCRESAHA.109.203703.
Article CAS PubMed PubMed Central Google Scholar
Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137(21):2256–73. https://doi.org/10.1161/CIRCULATIONAHA.116.026099.
Article CAS PubMed Google Scholar
Ghali R, Habeichi N, Kaplan A et al. IL-33 induces type-2-cytokine phenotype but exacerbates cardiac remodeling post-myocardial infarction with eosinophil recruitment, worsened systolic dysfunction, and ventricular wall rupture. Clin Sci (Lond). 2020. https://doi.org/10.1042/CS20200402.
Nie X, Li C, Hu S, Xue F, Kang YJ, Zhang W. An appropriate loading control for western blot analysis in animal models of myocardial ischemic infarction. Biochem Biophys Rep. 2017;12:108–13. https://doi.org/10.1016/j.bbrep.2017.09.001.
PubMed PubMed Central Google Scholar
Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 2008;3(6):965–76. https://doi.org/10.1038/nprot.2008.61.
Article CAS PubMed Google Scholar
Grimbert L, Sanz MN, Gressette M, et al. Spatiotemporal AMPKalpha2 deletion in mice induces cardiac dysfunction, fibrosis and cardiolipin remodeling associated with mitochondrial dysfunction in males only. Biol Sex Differ. 2021;12(1):52. https://doi.org/10.1186/s13293-021-00394-z.
Article CAS PubMed PubMed Central Google Scholar
Xie N, Zhang L, Gao W, et al. NAD(+) metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020;5(1):227. https://doi.org/10.1038/s41392-020-00311-7.
Article CAS PubMed PubMed Central Google Scholar
Larsen S, Nielsen J, Hansen CN, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590(14):3349–60. https://doi.org/10.1113/jphysiol.2012.230185.
Article CAS PubMed PubMed Central Google Scholar
Klimova N, Fearnow A, Kristian T. Role of NAD(+)-modulated mitochondrial free radical generation in mechanisms of acute brain injury. Brain Sci. 2020;10(7). https://doi.org/10.3390/brainsci10070449.
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD(+) metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119–41. https://doi.org/10.1038/s41580-020-00313-x.
Article CAS PubMed Google Scholar
Canto C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53. https://doi.org/10.1016/j.cmet.2015.05.023.
Article CAS PubMed PubMed Central Google Scholar
Tannous C, Booz GW, Altara R, et al. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf). 2021;231(3):e13551. https://doi.org/10.1111/apha.13551.
Article CAS PubMed Google Scholar
Cameron AM, Castoldi A, Sanin DE, et al. Inflammatory macrophage dependence on NAD(+) salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat Immunol. 2019;20(4):420–32. https://doi.org/10.1038/s41590-019-0336-y.
Article CAS PubMed Google Scholar
Tannous C, Deloux R, Karoui A et al. NMRK2 gene is upregulated in dilated cardiomyopathy and required for cardiac function and NAD levels during aging. Int J Mol Sci. 2021;22(7). https://doi.org/10.3390/ijms22073534.
Ma S, Feng J, Lin X, et al. Nicotinamide riboside alleviates cardiac dysfunction and remodeling in pressure overload cardiac hypertrophy. Oxid Med Cell Longev. 2021;2021:5546867. https://doi.org/10.1155/2021/5546867.
Article PubMed PubMed Central Google Scholar
Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://doi.org/10.1038/s41467-018-03421-7.
Article PubMed PubMed Central Google Scholar
Rajamohan SB, Pillai VB, Gupta M, et al. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol. 2009;29(15):4116–29. https://doi.org/10.1128/MCB.00121-09.
Article CAS PubMed PubMed Central Google Scholar
Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants (Basel). 2019;8(10). https://doi.org/10.3390/antiox8100454.
Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563–81. https://doi.org/10.1007/s00441-016-2431-9.
Article CAS PubMed PubMed Central Google Scholar
Zhou B, Wang DD, Qiu Y, et al. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J Clin Invest. 2020;130(11):6054–63. https://doi.org/10.1172/JCI138538.
Article CAS PubMed PubMed Central Google Scholar
Engelbertsen D, Andersson L, Ljungcrantz I, et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler Thromb Vasc Biol. 2013;33(3):637–44. https://doi.org/10.1161/ATVBAHA.112.300871.
Comments (0)