Metabolomics reveals that chronic restraint stress alleviates carbon tetrachloride-induced hepatic fibrosis through the INSR/PI3K/AKT/AMPK pathway

Roehlen N, Crouchet E, Baumert TF (2020) Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells 9(4):875. https://doi.org/10.3390/cells9040875

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parola M, Pinzani M (2019) Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 65:37–55. https://doi.org/10.1016/j.mam.2018.09.002

Article  CAS  PubMed  Google Scholar 

Ren L, Qi K, Zhang L, Bai Z, Ren C, Xu X, Zhang Z, Li X (2019) Glutathione might attenuate cadmium-induced liver oxidative stress and hepatic stellate cell activation. Biol Trace Elem Res 191(2):443–452. https://doi.org/10.1007/s12011-019-1641-x

Article  CAS  PubMed  Google Scholar 

Kisseleva T, Brenner D (2021) Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 18(3):151–166. https://doi.org/10.1038/s41575-020-00372-7

Article  PubMed  Google Scholar 

Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS (2021) Liver cirrhosis. Lancet (London, England) 398(10308):1359–1376. https://doi.org/10.1016/S0140-6736(21)01374-X

Article  PubMed  Google Scholar 

Friedman SL, Pinzani M (2022) Hepatic fibrosis 2022: unmet needs and a blueprint for the future. Hepatology (Baltimore, Md.) 75(2):473–488. https://doi.org/10.1002/hep.32285

Guo H, Zheng L, Xu H, Pang Q, Ren Z, Gao Y, Wang T (2022) Neurobiological links between stress, brain injury, and disease. Oxid Med Cell Longev 2022:8111022. https://doi.org/10.1155/2022/8111022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osborne MT, Shin LM, Mehta NN, Pitman RK, Fayad ZA, Tawakol A (2020) Disentangling the links between psychosocial stress and cardiovascular disease. Circ Cardiovasc Imaging 13(8):e010931. https://doi.org/10.1161/CIRCIMAGING.120.010931

Article  PubMed  PubMed Central  Google Scholar 

Margolis KG, Cryan JF, Mayer EA (2021) The microbiota-gut-brain axis: from motility to mood. Gastroenterology 160(5):1486–1501. https://doi.org/10.1053/j.gastro.2020.10.066

Article  PubMed  Google Scholar 

Rohleder N (2019) Stress and inflammation - the need to address the gap in the transition between acute and chronic stress effects. Psychoneuroendocrinology 105:164–171. https://doi.org/10.1016/j.psyneuen.2019.02.021

Article  PubMed  Google Scholar 

Ceci FM, Ferraguti G, Petrella C, Greco A, Tirassa P, Iannitelli A, Ralli M, Vitali M, Ceccanti M, Chaldakov GN et al (2021) Nerve growth factor, stress and diseases. Curr Med Chem 28(15):2943–2959. https://doi.org/10.2174/0929867327999200818111654

Article  CAS  PubMed  Google Scholar 

Yang X, Han ZP, Zhang SS, Zhu PX, Hao C, Fan TT, Yang Y, Li L, Shi YF, Wei LX (2014) Chronic restraint stress decreases the repair potential from mesenchymal stem cells on liver injury by inhibiting TGF-β1 generation. Cell Death Dis 5(6):e1308. https://doi.org/10.1038/cddis.2014.257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Sun Q, Li S, Zhai Y, Wang J, Chen B, Lu J (2016) Chronic restraint stress reduces carbon tetrachloride-induced liver fibrosis. Exp Ther Med 11(6):2147–2152. https://doi.org/10.3892/etm.2016.3205

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takada S, Matsubara T, Fujii H, Sato-Matsubara M, Daikoku A, Odagiri N, Amano-Teranishi Y, Kawada N, Ikeda K (2021) Stress can attenuate hepatic lipid accumulation via elevation of hepatic β-muricholic acid levels in mice with nonalcoholic steatohepatitis. Lab Invest 101(2):193–203. https://doi.org/10.1038/s41374-020-00509-x

Corona-Pérez A, Díaz-Muñoz M, Cuevas-Romero E, Luna-Moreno D, Valente-Godínez H, Vázquez-Martínez O, Martínez-Gómez M, Rodríguez-Antolín J, Nicolás-Toledo L (2017) Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats. Stress (Amsterdam, Netherlands) 20(6):608–617. https://doi.org/10.1080/10253890.2017.1381840

Article  CAS  PubMed  Google Scholar 

Cheng F, Ma C, Wang X, Zhai C, Wang G, Xu X, Mu J, Li C, Wang Z, Zhang X et al (2017) Effect of traditional Chinese medicine formula Sinisan on chronic restraint stress-induced nonalcoholic fatty liver disease: a rat study. BMC Complement Altern Med 17(1):203. https://doi.org/10.1186/s12906-017-1707-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramos-Vara JA (2017) Principles and Methods of Immunohistochemistry. Methods Mol Biol (Clifton, N.J.) 1641:115–128. https://doi.org/10.1007/978-1-4939-7172-5_5

Zheng J, Zheng Y, Li W, Zhi J, Huang X, Zhu W, Liu Z, Gong L (2022) Combined metabolomics with transcriptomics reveals potential plasma biomarkers correlated with non-small-cell lung cancer proliferation through the Akt pathway. Clin Chim Acta 530:66–73. https://doi.org/10.1016/j.cca.2022.02.018

Wang C, Ma C, Gong L, Dai S, Li Y (2021) Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur J Pharmacol 912:174604. https://doi.org/10.1016/j.ejphar.2021.174604

Article  CAS  PubMed  Google Scholar 

Rehman A, Mehta KJ (2022) Betaine in ameliorating alcohol-induced hepatic steatosis. Eur J Nutr 61(3):1167–1176. https://doi.org/10.1007/s00394-021-02738-2

Article  CAS  PubMed  Google Scholar 

Chen W, Zhang X, Xu M, Jiang L, Zhou M, Liu W, Chen Z, Wang Y, Zou Q, Wang L (2021) Betaine prevented high-fat diet-induced NAFLD by regulating the FGF10/AMPK signaling pathway in ApoE-/- mice. Eur J Nutr 60(3):1655–1668. https://doi.org/10.1007/s00394-020-02362-6

Article  CAS  PubMed  Google Scholar 

Hagar H, Husain S, Fadda LM, Attia NM, Attia MMA, Ali HM (2019) Inhibition of NF-κB and the oxidative stress -dependent caspase-3 apoptotic pathway by betaine supplementation attenuates hepatic injury mediated by cisplatin in rats. Pharmacol Rep 71(6):1025–1033. https://doi.org/10.1016/j.pharep.2019.06.003

Article  PubMed  Google Scholar 

Khodayar MJ, Kalantari H, Khorsandi L, Rashno M, Zeidooni L (2020) Upregulation of Nrf2-related cytoprotective genes expression by acetaminophen-induced acute hepatotoxicity in mice and the protective role of betaine. Hum Exp Toxicol 39(7):948–959. https://doi.org/10.1177/0960327120905962

Article  CAS  PubMed  Google Scholar 

Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K, Labudovic-Borovic M, Dragutinovic V, Vucevic D, Jorgacevic B et al (2019) Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol 848:39–48. https://doi.org/10.1016/j.ejphar.2019.01.043

Article  CAS  PubMed  Google Scholar 

Bingül İ, Başaran-Küçükgergin C, Aydın AF, Çoban J, Doğan-Ekici I, Doğru-Abbasoğlu S, Uysal M (2016) Betaine treatment decreased oxidative stress, inflammation, and stellate cell activation in rats with alcoholic liver fibrosis. Environ Toxicol Pharmacol 45:170–178. https://doi.org/10.1016/j.etap.2016.05.033

Article  CAS  PubMed  Google Scholar 

Tsai MT, Chen CY, Pan YH, Wang SH, Mersmann HJ, Ding ST (2015) Alleviation of carbon-tetrachloride-induced liver injury and fibrosis by betaine supplementation in chickens. Evid Based Complement Alternat Med 2015

Quesada-Vázquez S, Colom-Pellicer M, Navarro-Masip È, Aragonès G, Del Bas JM, Caimari A, Escoté X (2021) Supplementation with a specific combination of metabolic cofactors ameliorates non-alcoholic fatty liver disease, hepatic fibrosis, and insulin resistance in mice. Nutrients 13(10):3532. https://doi.org/10.3390/nu13103532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai Y, Hao P, Sun Z, Guo Z, Xu H, Xue L, Song H, Li Y, Li S, Gao M et al (2021) Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J Endocrinol 249(2):149–161. https://doi.org/10.1530/JOE-20-0561

Article  CAS  PubMed  Google Scholar 

Eshaghian A, Khodarahmi A, Safari F, Binesh F, Moradi A (2018) Curcumin attenuates hepatic fibrosis and insulin resistance induced by bile duct ligation in rats. Br J Nutr 120(4):393–403. https://doi.org/10.1017/S0007114518001095

Article  CAS  PubMed  Google Scholar 

Fujii, H., Kawada, N., & Japan Study Group Of Nafld Jsg-Nafld (2020) The role of insulin resistance and diabetes in nonalcoholic fatty liver disease. Int J Mol Sci 21(11):3863. https://doi.org/10.3390/ijms21113863

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN (2022) Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatol Commun 6(1):12–35. https://doi.org/10.1002/hep4.1801

Article  CAS  PubMed  Google Scholar 

Gaggini M, Carli F, Rosso C, Younes R, D’Aurizio R, Bugianesi E, Gastaldelli A (2019) Altered metabolic profile and adipocyte insulin resistance mark severe liver fibrosis in patients with chronic liver disease. Int J Mol Sci 20(24):6333. https://doi.org/10.3390/ijms20246333

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan Y, Zhou XE, Xu HE, Melcher K (2018) Structure and physiological regulation of AMPK. Int J Mol Sci 19(11):3534. https://doi.org/10.3390/ijms19113534

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z et al (2014) The lysosomal v-ATPase-Regulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20(3):526–540. https://doi.org/10.1016/j.cmet.2014.06.014

Article  CAS  PubMed  Google Scholar 

Ramezani-Moghadam M, Wang J, Ho V, Iseli TJ, Alzahrani B, Xu A, Van der Poorten D, Qiao L, George J, Hebbard L (2015) Adiponectin reduces hepatic stellate cell migration by promoting tissue inhibitor of metalloproteinase-1 (TIMP-1) secretion. J Biol Chem 290(9):5533–5542. https://doi.org/10.1074/jbc.M114.598011

Article  CAS 

留言 (0)

沒有登入
gif