AGO2 silences mobile transposons in the nucleus of quiescent cells

Cerutti, H. & Casas-Mollano, J. A. On the origin and functions of RNA-mediated silencing: from protists to man. Curr. Genet. 50, 81–99 (2006).

Article  CAS  PubMed Central  Google Scholar 

Ozata, D. M. et al. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

Article  CAS  PubMed  Google Scholar 

Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

Article  CAS  PubMed  Google Scholar 

Hammond, S. M. et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

Article  CAS  PubMed  Google Scholar 

Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

Article  CAS  PubMed Central  Google Scholar 

Sala, L., Chandrasekhar, S. & Vidigal, J. A. AGO unchained: canonical and non-canonical roles of Argonaute proteins in mammals. Front. Biosci. 25, 1–42 (2020).

Article  CAS  Google Scholar 

Stein, P. et al. Essential role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet. 11, e1005013 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

Article  CAS  Google Scholar 

Zielezinski, A. & Karlowski, W. M. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. RNA Biol. 12, 761–770 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011).

Article  CAS  PubMed  Google Scholar 

Braun, J. E. et al. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

Article  CAS  Google Scholar 

Fabian, M. R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat. Struct. Mol. Biol. 18, 1211–1217 (2011).

Article  CAS  PubMed  Google Scholar 

Bhattacharyya, S. N. et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

Article  CAS  Google Scholar 

Ma, J. et al. MicroRNA activity is suppressed in mouse oocytes. Curr. Biol. 20, 265–270 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suh, N. et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271–277 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380–385 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morita, S. et al. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89, 687–696 (2007).

Article  CAS  Google Scholar 

Han, Y. C. et al. An allelic series of miR-17 approximately 92-mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat. Genet. 47, 766–775 (2015).

Article  CAS  PubMed Central  Google Scholar 

Moro, A. et al. MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat. Cell Biol. 21, 348–358 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chivukula, R. R. et al. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 157, 1104–1116 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Pontual, L. et al. Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat. Genet. 43, 1026–1030 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Mencia, A. et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat. Genet. 41, 609–613 (2009).

Article  CAS  Google Scholar 

Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).

Article  CAS  Google Scholar 

Zeng, Y. et al. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem. J. 413, 429–436 (2008).

Article  CAS  Google Scholar 

Horman, S. R. et al. Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of microRNA targets. Mol. Cell 50, 356–367 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudel, S. et al. Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. 39, 2330–2343 (2011).

Article  Google Scholar 

Bridge, K. S. et al. Argonaute utilization for miRNA silencing is determined by phosphorylation-dependent recruitment of LIM-domain-containing proteins. Cell Rep. 20, 173–187 (2017).

Article  CAS  PubMed Central  Google Scholar 

McKenzie, A. J. et al. KRAS–MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15, 978–987 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopez-Orozco, J. et al. Functional analyses of phosphorylation events in human Argonaute 2. RNA 21, 2030–2038 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, J. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497, 383–387 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, M. et al. Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence. Mol. Cell 55, 782–790 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quevillon Huberdeau, M. et al. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J. 36, 2088–2106 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazumder, A. et al. A transient reversal of miRNA-mediated repression controls macrophage activation. EMBO Rep. 14, 1008–1016 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golden, R. J. et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542, 197–202 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi, H. H. et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455, 421–424 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leung, A. K. et al. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42, 489–499 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo, G. J. et al. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 14, 435–445 (2013).

留言 (0)

沒有登入
gif