Interrogating epigenetic mechanisms with chemically customized chromatin

Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).

Article  PubMed  Google Scholar 

Zhao, S., Allis, C. D. & Wang, G. G. The language of chromatin modification in human cancers. Nat. Rev. Cancer 21, 413–430 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

Article  CAS  PubMed  Google Scholar 

Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

Article  CAS  PubMed  Google Scholar 

Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

Article  CAS  PubMed  Google Scholar 

Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643 (2017).

Article  CAS  PubMed  Google Scholar 

Lusser, A. & Kadonaga, J. T. Strategies for the reconstitution of chromatin. Nat. Methods 1, 19–26 (2004).

Article  CAS  PubMed  Google Scholar 

Müller, M. M. & Muir, T. W. Histones: at the crossroads of peptide and protein chemistry. Chem. Rev. 115, 2296–2349 (2015).

Article  PubMed  Google Scholar 

Cuvier, O. & Fierz, B. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat. Rev. Genet. 18, 457–472 (2017).

Article  CAS  PubMed  Google Scholar 

Fierz, B. & Poirier, M. G. Biophysics of chromatin dynamics. Annu. Rev. Biophys. 48, 321–345 (2019).

Article  CAS  PubMed  Google Scholar 

Mitchener, M. M. & Muir, T. W. Oncohistones: exposing the nuances and vulnerabilities of epigenetic regulation. Mol. Cell 82, 2925–2938 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maksimovic, I. & David, Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends Biochem. Sci. 46, 718–730 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).

Article  CAS  PubMed  Google Scholar 

Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

Article  CAS  PubMed  Google Scholar 

Krieger, D. E., Levine, R., Merrifield, R. B., Vidali, G. & Allfrey, V. G. Chemical studies of histone acetylation. Substrate specificity of a histone deacetylase from calf thymus nuclei. J. Biol. Chem. 249, 332–334 (1974).

Article  CAS  PubMed  Google Scholar 

Krieger, D. E., Vidali, G., Erickson, B. W., Allfrey, V. G. & Merrifield, R. B. The synthesis of diacetylated histone H4-(1–37) for studies on the mechanism of histone deacetylation. Bioorg. Chem. 8, 409–427 (1979).

Article  CAS  Google Scholar 

Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

Article  CAS  PubMed  Google Scholar 

Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291–1300 (2008).

Article  CAS  PubMed  Google Scholar 

Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

Article  CAS  PubMed  Google Scholar 

Musselman, C. A. & Kutateladze, T. G. Strategies for generating modified nucleosomes: applications within structural biology studies. ACS Chem. Biol. 14, 579–586 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sankar, A. et al. Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nat. Genet. 54, 754–760 (2022).

Article  CAS  PubMed  Google Scholar 

Grewal, S. I. S. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol. Cell 83, 1767–1785 (2023).

Article  CAS  PubMed  Google Scholar 

Fitz-James, M. H. & Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 23, 325–341 (2022).

Article  CAS  PubMed  Google Scholar 

Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, K., Mosch, K., Fischle, W. & Grewal, S. I. S. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

Article  CAS  PubMed  Google Scholar 

Al-Sady, B., Madhani, H. D. & Narlikar, G. J. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol. Cell 51, 80–91 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Müller, M. M., Fierz, B., Bittova, L., Liszczak, G. & Muir, T. W. A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat. Chem. Biol. 12, 188–193 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Poepsel, S., Kasinath, V. & Nogales, E. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat. Struct. Mol. Biol. 25, 154–162 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge, E. J., Jani, K. S., Diehl, K. L., Müller, M. M. & Muir, T. W. Nucleation and propagation of heterochromatin by the histone methyltransferase PRC2: geometric constraints and impact of the regulatory subunit JARID2. J. Am. Chem. Soc. 141, 15029–15039 (2019). Through biochemical assays utilizing a variety of heterotypic designer nucleosome arrays, this study uncovers the geometric constraints of H3K27me3 propagation and demonstrates how differentially modified JARID2 regulates PRC2 substrate preferences.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanulli, S. et al. Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol. Cell 57, 769–783 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70, 1149–1162 (2018).

Article

留言 (0)

沒有登入
gif