TFEB–vacuolar ATPase signaling regulates lysosomal function and microglial activation in tauopathy

Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

Article  CAS  PubMed  Google Scholar 

Colacurcio, D. J. & Nixon, R. A. Disorders of lysosomal acidification—the emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res. Rev. 32, 75–88 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–296 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

Article  CAS  PubMed  Google Scholar 

Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866 (2011).

Article  CAS  PubMed  Google Scholar 

Xiao, Q. et al. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J. Neurosci. 34, 9607–9620 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Polito, V. A. et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med. 6, 1142–1160 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parr, C. et al. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein. Mol. Cell. Biol. 32, 4410–4418 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, Q. et al. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβgeneration and amyloid plaque pathogenesis. J. Neurosci. 35, 12137–12151 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y. et al. TFEB regulates lysosomal exocytosis of tau and its loss of function exacerbates tau pathology and spreading. Mol. Psychiatry 26, 5925–5939 (2021).

Article  CAS  PubMed  Google Scholar 

Martini-Stoica, H. et al. TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. J. Exp. Med. 215, 2355–2377 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mindell, J. A. Lysosomal acidification mechanisms. Annu Rev. Physiol. 74, 69–86 (2012).

Article  CAS  PubMed  Google Scholar 

Bouché, V. et al. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy 12, 484–498 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, T. et al. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J. Cell Sci. 128, 2938–2950 (2015).

PubMed  PubMed Central  Google Scholar 

Xu, Y., Martini-Stoica, H. & Zheng, H. A seeding based cellular assay of tauopathy. Mol. Neurodegener. 11, 32 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e1217 (2017).

Article  CAS  PubMed  Google Scholar 

Krasemann, S. et al. The TREM2-APOEpathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e569 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pastore, N. et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 12, 1240–1258 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal 5, ra42 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Zeng, J., Shirihai, O. S. & Grinstaff, M. W. Degradable nanoparticles restore lysosomal pH and autophagic flux in lipotoxic pancreatic beta cells. Adv. Health. Mater. 8, e1801511 (2019).

Article  Google Scholar 

Martini-Stoica, H., Xu, Y., Ballabio, A. & Zheng, H. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 39, 221–234 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martina, J. A., Diab, H. I., Brady, O. A. & Puertollano, R. TFEB and TFE3 are novel components of the integrated stress response. EMBO J. 35, 479–495 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brady, O. A., Martina, J. A. & Puertollano, R. Emerging roles for TFEB in the immune response and inflammation. Autophagy 14, 181–189 (2018).

Article  CAS  PubMed  Google Scholar 

Toei, M., Saum, R. & Forgac, M. Regulation and isoform function of the V-ATPases. Biochemistry 49, 4715–4723 (2010).

Article  CAS  PubMed  Google Scholar 

Ho, M. N. et al. VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. J. Biol. Chem. 268, 18286–18292 (1993).

Article  CAS  PubMed  Google Scholar 

Jefferies, K. C. & Forgac, M. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. J. Biol. Chem. 283, 4512–4519 (2008).

Article  CAS  PubMed  Google Scholar 

Duan, X. et al. Deficiency of ATP6V1H causes bone loss by inhibiting bone resorption and bone formation through the TGF-β1 pathway. Theranostics 6, 2183–2195 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, S. H. et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403–1409 (2006).

Article  CAS  PubMed  Google Scholar 

Hu, H. et al. Genome-wide association study identified ATP6V1H locus influencing cerebrospinal fluid BACE activity. BMC Med. Genet. 19, 75 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Duan, X., Yang, S., Zhang, L. & Yang, T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics 8, 5379–5399 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fisher, D. E., Carr, C. S., Parent, L. A. & Sharp, P. A. TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family. Genes Dev. 5, 2342–2352 (1991).

Article  CAS  PubMed  Google Scholar 

Hemesath, T. J. et al. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8, 2770–2780 (1994).

Article  CAS  PubMed  Google Scholar 

Dolan, M.-J. et al. A resource for generating and manipulating human microglial states in vitro. Preprint at bioRxiv https://doi.org/10.1101/2022.05.02.490100 (2022).

Shi, Y. et al. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron 109, 2413–2426.e2417 (2021).

Article  CAS  PubMed  P

留言 (0)

沒有登入
gif