Agathis dammara Extract and its Monomer Araucarone Attenuate Abdominal Aortic Aneurysm in Mice

Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol. 2019;16(4):225–42. https://doi.org/10.1038/s41569-018-0114-9.

Article  PubMed  Google Scholar 

Sakalihasan N, Michel J-B, Katsargyris A, et al. Abdominal aortic aneurysms. Nat Rev Dis Primers. 2018;4(1):34. https://doi.org/10.1038/s41572-018-0030-7.

Article  PubMed  Google Scholar 

Wang YD, Liu ZJ, Ren J, Xiang MX. Pharmacological therapy of abdominal aortic aneurysm: an update. Curr Vasc Pharmacol. 2018;16(2):114–24. https://doi.org/10.2174/1570161115666170413145705.

Article  PubMed  CAS  Google Scholar 

Qian GQ, Adeyanju O, Olajuyin A, Guo X. Abdominal aortic aneurysm formation with a focus on vascular smooth muscle cells. Life-Basel. 2022;12(2):ARTN 191. https://doi.org/10.3390/life12020191.

Article  CAS  Google Scholar 

Sorokin V, Vickneson K, Kofidis T, et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front Immunol. 2020;11:ARTN 599415. https://doi.org/10.3389/fimmu.2020.599415.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Petsophonsakul P, Furmanik M, Forsythe R, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation involvement of vitamin K-dependent processes. Arterioscler Thromb Vasc Biol. 2019;39(7):1351–68. https://doi.org/10.1161/Atvbaha.119.312787.

Article  PubMed  CAS  Google Scholar 

Rombouts KB, Merrienboer TAR, Ket JCF, Bogunovic N, Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 2021;52(4):e13697. https://doi.org/10.1111/eci.13697.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shi JY, Guo J, Li ZD, Xu BH, Miyata M. Importance of NLRP3 inflammasome in abdominal aortic aneurysms. J Atheroscler Thromb. 2021;28(5):454–66. https://doi.org/10.5551/jat.RV17048.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zheng YD, Xu L, Dong NG, Li F. NLRP3 inflammasome: the rising star in cardiovascular diseases. Front Cardiovasc Med. 2022;9:927061. https://doi.org/10.3389/fcvm.2022.927061.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wortmann M, Peters AS, Erhart P, Korfer D, Bockler D, Dihlmann S. Inflammasomes in the pathophysiology of aortic disease. Cells. 2021;10(9):ARTN 2433. https://doi.org/10.3390/cells10092433.

Article  CAS  Google Scholar 

Ren XS, Tong Y, Ling L, et al. NLRP3 gene deletion attenuates angiotensin II-induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling. Cell Physiol Biochem. 2017;44(6):2269–80. https://doi.org/10.1159/000486061.

Article  PubMed  CAS  Google Scholar 

Ren PP, Wu D, Appel R, et al. Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice. J Am Heart Assoc. 2020;9(7):e014044. https://doi.org/10.1161/JAHA.119.014044.

Article  PubMed  PubMed Central  Google Scholar 

Wang AY, Yue SS, Peng AK, Qi R. A review of research progress on agathis dammara and its application prospects for cardiovascular diseases and fatty liver disease. Mini-Rev Med Chem. 2021;21(6):670–6. https://doi.org/10.2174/1389557520666201117110834.

Article  PubMed  CAS  Google Scholar 

Khan AW, ul Abidin Z, Sahibzada MUK, et al. Potential biomedical applications of Araucaria araucana as an antispasmodic, bronchodilator, vasodilator, and antiemetic: involvement of calcium channels. J Ethnopharmacol. 2022;298:115651. https://doi.org/10.1016/j.jep.2022.115651.

Article  PubMed  CAS  Google Scholar 

Frezza C, Venditti A, De Vita D, et al. Phytochemistry, chemotaxonomy, and biological activities of the araucariaceae family-a review. Plants-Basel. 2020;9(7):ARTN 888. https://doi.org/10.3390/plants9070888.

Article  Google Scholar 

Enzell CR, Thomas BR. The wood resin of agathis australis salis. - Structure and stereochemistry of the main constituents. Tetrahedron Lett. 1964;5(8):391–7. https://doi.org/10.1016/0040-4039(64)83003-3.

Article  Google Scholar 

Wang YX, Chen C, Wang QY, Cao YN, Xu L, Qi R. Inhibitory effects of cycloastragenol on abdominal aortic aneurysm and its related mechanisms. Br J Pharmacol. 2019;176(2):282–96. https://doi.org/10.1111/bph.14515.

Article  PubMed  CAS  Google Scholar 

Chen C, Wang Y, Cao Y, et al. Mechanisms underlying the inhibitory effects of probucol on elastase-induced abdominal aortic aneurysm in mice. Br J Pharmacol. 2019;177(1):204–16. https://doi.org/10.1111/bph.14857.

Article  PubMed  PubMed Central  Google Scholar 

Chhabra A, Rani V. Gel-based gelatin zymography to examine matrix metalloproteinase activity in cell culture. Methods Mol Biol. 2018;1731:83–96. https://doi.org/10.1007/978-1-4939-7595-2_9.

Article  PubMed  CAS  Google Scholar 

Lal AR, Cambie RC, Rutledge PS, Woodgate PD. Chemistry of Fijian plants. 6. Ent-pimarane and ent-abietane diterpenes from Euphorbia-Fidjiana. Phytochemistry. 1990;29(7):2239–46. https://doi.org/10.1016/0031-9422(90)83045-3.

Article  CAS  Google Scholar 

Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther. 2015;13(9):975–87. https://doi.org/10.1586/14779072.2015.1074861.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bossone E, Eagle KA. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes. Nat Rev Cardiol. 2020;18(5):331–48. https://doi.org/10.1038/s41569-020-00472-6.

Article  PubMed  Google Scholar 

Yuan Z, Lu Y, Wei J, Wu J, Yang J, Cai Z. Abdominal aortic aneurysm: roles of inflammatory cells. Front Immunol. 2021;11: 609161. https://doi.org/10.3389/fimmu.2020.609161.

Article  PubMed  PubMed Central  Google Scholar 

Maguire EM, Pearce SWA, Xiao R, Oo AY, Xiao QZ. Matrix metalloproteinase in abdominal aortic aneurysm and aortic dissection. Pharmaceuticals. 2019;12(3):ARTN 118. https://doi.org/10.3390/ph12030118.

Article  Google Scholar 

Yu J, Liu R, Huang JH, Wang LX, Wang W. Inhibition of Phosphatidylinositol 3-kinease suppresses formation and progression of experimental abdominal aortic aneurysms. Sci Rep. 2017;7(1):15208. https://doi.org/10.1038/s41598-017-15207-w.

Article  PubMed  PubMed Central  Google Scholar 

Li D, Guo Y-y, Cen X-f, et al. Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-κB pathways. Acta Pharmacol Sin. 2021;43(8):1989–2002. https://doi.org/10.1038/s41401-021-00820-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhu Q, Enkhjargal B, Huang L, et al. Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation. 2018;15(1):178. https://doi.org/10.1186/s12974-018-1211-8.

Article  PubMed  PubMed Central  Google Scholar 

Fu H, Shen Q-r, Zhao Y, et al. Activating α7nAChR ameliorates abdominal aortic aneurysm through inhibiting pyroptosis mediated by NLRP3 inflammasome. Acta Pharmacol Sin. 2022;43(10):2585–95. https://doi.org/10.1038/s41401-022-00876-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu D, Ren PP, Zheng YQ, et al. NLRP3 (Nucleotide oligomerization domain-like receptor family, pyrin domain containing 3)-caspase-1 inflammasome degrades contractile proteins: implications for aortic biomechanical dysfunction and aneurysm and dissection formation. Arterioscler Thromb Vasc Biol. 2017;37(4):694–706. https://doi.org/10.1161/Atvbaha.116.307648.

Article  PubMed  PubMed Central  Google Scholar 

Coll RC, Robertson AAB, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248-+. https://doi.org/10.1038/nm.3806.

Article  PubMed  PubMed Central  CAS  Google Scholar 

留言 (0)

沒有登入
gif