Curigliano G, Cardinale D, Dent S, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309–25. https://doi.org/10.3322/caac.21341
Kane RC, McGuinn WD Jr, Dagher R, Justice R, Pazdur R. Dexrazoxane (Totect): FDA review and approval for the treatment of accidental extravasation following intravenous anthracycline chemotherapy. Oncologist. 2008;13(4):445–50. https://doi.org/10.1634/theoncologist.2007-0247
Article CAS PubMed Google Scholar
Asselin BL, Devidas M, Chen L, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children’s Oncology Group Randomized Trial Pediatric Oncology Group 9404. J Clin Oncol. 2016;34(8):854–62. https://doi.org/10.1200/jco.2015.60.8851
Article CAS PubMed Google Scholar
Lin KH, Marthandam Asokan S, Kuo WW, et al. Andrographolide mitigates cardiac apoptosis to provide cardio-protection in high-fat-diet-induced obese mice. Environ Toxicol. 2020;35(6):707–13. https://doi.org/10.1002/tox.22906
Article ADS CAS PubMed Google Scholar
Lo CW, Lii CK, Hong JJ, et al. Andrographolide inhibits IL-1β release in bone marrow-derived macrophages and monocyte infiltration in mouse knee joints induced by monosodium urate. Toxicol Appl Pharmacol. 2021;410:115341. https://doi.org/10.1016/j.taap.2020.115341
Article CAS PubMed Google Scholar
Xiang DC, Yang JY, Xu YJ, et al. Protective effect of Andrographolide on 5-Fu induced intestinal mucositis by regulating p38 MAPK signaling pathway. Life Sci. 2020;252:117612. https://doi.org/10.1016/j.lfs.2020.117612
Article CAS PubMed Google Scholar
Wanandi SI, Limanto A, Yunita E, et al. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS ONE. 2020;15(11):e0240020. https://doi.org/10.1371/journal.pone.0240020
Article CAS PubMed PubMed Central Google Scholar
Dutta N, Ghosh S, Nelson VK, et al. Andrographolide upregulates protein quality control mechanisms in cell and mouse through upregulation of mTORC1 function. Biochim Biophys Acta Gen Subj. 2021;1865(6):129885. https://doi.org/10.1016/j.bbagen.2021.129885
Article CAS PubMed Google Scholar
Tian Q, Liu J, Chen Q, Zhang M. Andrographolide contributes to the attenuation of cardiac hypertrophy by suppressing endoplasmic reticulum stress. Pharm Biol. 2023;61(1):61–8. https://doi.org/10.1080/13880209.2022.2157021
Article CAS PubMed Google Scholar
Elasoru SE, Rhana P, de Oliveira BT, et al. Andrographolide protects against isoproterenol-induced myocardial infarction in rats through inhibition of L-type Ca(2+) and increase of cardiac transient outward K(+) currents. Eur J Pharmacol. 2021;906:174194. https://doi.org/10.1016/j.ejphar.2021.174194
Article CAS PubMed Google Scholar
Huang Y, Liu M, Liu C, Dong N, Chen L. The natural product andrographolide ameliorates calcific aortic valve disease by regulating the proliferation of valve interstitial cells via the MAPK-ERK pathway. Front Pharmacol. 2022;13:871748. https://doi.org/10.3389/fphar.2022.871748
Article CAS PubMed PubMed Central Google Scholar
Zhou W, Wang Y, Lu A, Zhang G. Systems pharmacology in small molecular drug discovery. Int J Mol Sci. 2016;17(2):246. https://doi.org/10.3390/ijms17020246
Article CAS PubMed PubMed Central Google Scholar
Xie S, Deng W, Chen J, et al. Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway. Int J Biol Sci. 2020;16(1):12–26. https://doi.org/10.7150/ijbs.37269
Article CAS PubMed PubMed Central Google Scholar
Wei S, Ma W, Jiang C, et al. Hyperoside prevents doxorubicin-induced cardiotoxicity by inhibiting NOXs/ROS/NLRP3 inflammasome signaling pathway. Phytother Res. 2023;37(9):4196–209. https://doi.org/10.1002/ptr.7900
Article CAS PubMed Google Scholar
Li X, Sun T, Liu J, et al. Phloretin alleviates doxorubicin-induced cardiotoxicity through regulating Hif3a transcription via targeting transcription factor Fos. Phytomedicine. 2023;120:155046. https://doi.org/10.1016/j.phymed.2023.155046
Article CAS PubMed Google Scholar
Liu J, Sun T, Liu S, et al. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med. 2022;151(Pt A):106298. https://doi.org/10.1016/j.compbiomed.2022.106298
Article CAS PubMed PubMed Central Google Scholar
Zhai J, Tao L, Zhang S, et al. Calycosin ameliorates doxorubicin-induced cardiotoxicity by suppressing oxidative stress and inflammation via the sirtuin 1-NOD-like receptor protein 3 pathway. Phytother Res. 2020;34(3):649–59. https://doi.org/10.1002/ptr.6557
Article CAS PubMed Google Scholar
Yao C, Veleva T, Scott L Jr, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138(20):2227–42. https://doi.org/10.1161/circulationaha.118.035202
Article CAS PubMed PubMed Central Google Scholar
Wei S, Ma W, Jiang C et al. Hyperoside prevents doxorubicin-induced cardiotoxicity by inhibiting NOXs/ROS/NLRP3 inflammasome signaling pathway. Phytother Res. 2023.https://doi.org/10.1002/ptr.7900
Lin KH, Ramesh S, Agarwal S et al. Fisetin attenuates doxorubicin-induced cardiotoxicity by inhibiting the insulin-like growth factor II receptor apoptotic pathway through estrogen receptor-α/-β activation. Phytother Res. 2023.https://doi.org/10.1002/ptr.7855
Hu S, Liu B, Yang M, et al. Carnosic acid protects against doxorubicin-induced cardiotoxicity through enhancing the Nrf2/HO-1 pathway. Food Funct. 2023;14(8):3849–62. https://doi.org/10.1039/d2fo03904d
Article CAS PubMed Google Scholar
Wong SK, Chin KY, Ima-Nirwana S. A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury. Drug Des Devel Ther. 2021;15:4615–32. https://doi.org/10.2147/dddt.S331027
Article CAS PubMed PubMed Central Google Scholar
Zhang Q, Hu LQ, Li HQ, et al. Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway. Korean J Physiol Pharmacol. 2019;23(2):103–11. https://doi.org/10.4196/kjpp.2019.23.2.103
Article ADS CAS PubMed PubMed Central Google Scholar
Shu J, Huang R, Tian Y et al. Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways. Ann Palliat Med. 2020;9(4):1965–75. https://doi.org/10.21037/apm-20-960
Hsieh YL, Shibu MA, Lii CK, et al. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice. J Ethnopharmacol. 2016;192:170–7. https://doi.org/10.1016/j.jep.2016.07.018
Article CAS PubMed Google Scholar
Safaeian L, Shafiee F, Haghighatnazar S. Andrographolide protects against doxorubicin-and arsenic trioxide-induced toxicity in cardiomyocytes. Mol Biol Rep. 2023;50(1):389–97. https://doi.org/10.1007/s11033-022-08042-4
Article CAS PubMed Google Scholar
Zhao Y, Wang M, Li Y, Dong W. Andrographolide attenuates viral myocarditis through interactions with the IL-10/STAT3 and P13K/AKT/NF-κβ signaling pathways. Exp Ther Med. 2018;16(3):2138–43. https://doi.org/10.3892/etm.2018.6381
Article CAS PubMed PubMed Central Google Scholar
Liang E, Liu X, Du Z, Yang R, Zhao Y. Andrographolide ameliorates diabetic cardiomyopathy in mice by blockage of oxidative damage and NF-κB-mediated inflammation. Oxid Med Cell Longev. 2018;2018:9086747. https://doi.org/10.1155/2018/9086747
Article CAS PubMed PubMed Central Google Scholar
Fischbach H, Döring M, Nikles D, et al. Ultrasensitive quantification of TAP-dependent antigen compartmentalization in scarce primary immune cell subsets. Nat Commun. 2015;6:6199. https://doi.org/10.1038/ncomms7199
Article ADS CAS PubMed Google Scholar
Garrido G, Schrand B, Rabasa A, et al. Tumor-targeted silencing of the peptide transporter TAP induces potent antitumor immunity. Nat Commun. 2019;10(1):3773. https://doi.org/10.1038/s41467-019-11728-2
Article ADS CAS PubMed PubMed Central Google Scholar
Xia N, Lu Y, Gu M, et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation. 2020;142(20):1956–73. https://doi.org/10.1161/circulationaha.120.046789
Article CAS PubMed Google Scholar
Xu M, Li L, Liu Z, et al. ABCB2 (TAP1) as the downstream target of SHH signaling enhances pancreatic ductal adenocarcinoma drug resistance. Cancer Lett. 2013;333(2):152–8. https://doi.org/10.1016/j.canlet.2013.01.002
Article CAS PubMed Google Scholar
Baran-Marszak F, Feuillard J, Najjar I, et al. Differential roles of STAT1alpha and STAT1beta in fludarabine-induced cell cycle arrest and apoptosis in human B cells. Blood. 2004;104(8):2475–83. https://doi.org/10.1182/blood-2003-10-3508
Comments (0)