An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Andrographolide in Doxorubicin-Induced Cardiotoxicity

Curigliano G, Cardinale D, Dent S, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309–25. https://doi.org/10.3322/caac.21341

Article  PubMed  Google Scholar 

Kane RC, McGuinn WD Jr, Dagher R, Justice R, Pazdur R. Dexrazoxane (Totect): FDA review and approval for the treatment of accidental extravasation following intravenous anthracycline chemotherapy. Oncologist. 2008;13(4):445–50. https://doi.org/10.1634/theoncologist.2007-0247

Article  CAS  PubMed  Google Scholar 

Asselin BL, Devidas M, Chen L, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children’s Oncology Group Randomized Trial Pediatric Oncology Group 9404. J Clin Oncol. 2016;34(8):854–62. https://doi.org/10.1200/jco.2015.60.8851

Article  CAS  PubMed  Google Scholar 

Lin KH, Marthandam Asokan S, Kuo WW, et al. Andrographolide mitigates cardiac apoptosis to provide cardio-protection in high-fat-diet-induced obese mice. Environ Toxicol. 2020;35(6):707–13. https://doi.org/10.1002/tox.22906

Article  ADS  CAS  PubMed  Google Scholar 

Lo CW, Lii CK, Hong JJ, et al. Andrographolide inhibits IL-1β release in bone marrow-derived macrophages and monocyte infiltration in mouse knee joints induced by monosodium urate. Toxicol Appl Pharmacol. 2021;410:115341. https://doi.org/10.1016/j.taap.2020.115341

Article  CAS  PubMed  Google Scholar 

Xiang DC, Yang JY, Xu YJ, et al. Protective effect of Andrographolide on 5-Fu induced intestinal mucositis by regulating p38 MAPK signaling pathway. Life Sci. 2020;252:117612. https://doi.org/10.1016/j.lfs.2020.117612

Article  CAS  PubMed  Google Scholar 

Wanandi SI, Limanto A, Yunita E, et al. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS ONE. 2020;15(11):e0240020. https://doi.org/10.1371/journal.pone.0240020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dutta N, Ghosh S, Nelson VK, et al. Andrographolide upregulates protein quality control mechanisms in cell and mouse through upregulation of mTORC1 function. Biochim Biophys Acta Gen Subj. 2021;1865(6):129885. https://doi.org/10.1016/j.bbagen.2021.129885

Article  CAS  PubMed  Google Scholar 

Tian Q, Liu J, Chen Q, Zhang M. Andrographolide contributes to the attenuation of cardiac hypertrophy by suppressing endoplasmic reticulum stress. Pharm Biol. 2023;61(1):61–8. https://doi.org/10.1080/13880209.2022.2157021

Article  CAS  PubMed  Google Scholar 

Elasoru SE, Rhana P, de Oliveira BT, et al. Andrographolide protects against isoproterenol-induced myocardial infarction in rats through inhibition of L-type Ca(2+) and increase of cardiac transient outward K(+) currents. Eur J Pharmacol. 2021;906:174194. https://doi.org/10.1016/j.ejphar.2021.174194

Article  CAS  PubMed  Google Scholar 

Huang Y, Liu M, Liu C, Dong N, Chen L. The natural product andrographolide ameliorates calcific aortic valve disease by regulating the proliferation of valve interstitial cells via the MAPK-ERK pathway. Front Pharmacol. 2022;13:871748. https://doi.org/10.3389/fphar.2022.871748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou W, Wang Y, Lu A, Zhang G. Systems pharmacology in small molecular drug discovery. Int J Mol Sci. 2016;17(2):246. https://doi.org/10.3390/ijms17020246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie S, Deng W, Chen J, et al. Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway. Int J Biol Sci. 2020;16(1):12–26. https://doi.org/10.7150/ijbs.37269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei S, Ma W, Jiang C, et al. Hyperoside prevents doxorubicin-induced cardiotoxicity by inhibiting NOXs/ROS/NLRP3 inflammasome signaling pathway. Phytother Res. 2023;37(9):4196–209. https://doi.org/10.1002/ptr.7900

Article  CAS  PubMed  Google Scholar 

Li X, Sun T, Liu J, et al. Phloretin alleviates doxorubicin-induced cardiotoxicity through regulating Hif3a transcription via targeting transcription factor Fos. Phytomedicine. 2023;120:155046. https://doi.org/10.1016/j.phymed.2023.155046

Article  CAS  PubMed  Google Scholar 

Liu J, Sun T, Liu S, et al. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med. 2022;151(Pt A):106298. https://doi.org/10.1016/j.compbiomed.2022.106298

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhai J, Tao L, Zhang S, et al. Calycosin ameliorates doxorubicin-induced cardiotoxicity by suppressing oxidative stress and inflammation via the sirtuin 1-NOD-like receptor protein 3 pathway. Phytother Res. 2020;34(3):649–59. https://doi.org/10.1002/ptr.6557

Article  CAS  PubMed  Google Scholar 

Yao C, Veleva T, Scott L Jr, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138(20):2227–42. https://doi.org/10.1161/circulationaha.118.035202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei S, Ma W, Jiang C et al. Hyperoside prevents doxorubicin-induced cardiotoxicity by inhibiting NOXs/ROS/NLRP3 inflammasome signaling pathway. Phytother Res. 2023.https://doi.org/10.1002/ptr.7900

Lin KH, Ramesh S, Agarwal S et al. Fisetin attenuates doxorubicin-induced cardiotoxicity by inhibiting the insulin-like growth factor II receptor apoptotic pathway through estrogen receptor-α/-β activation. Phytother Res. 2023.https://doi.org/10.1002/ptr.7855

Hu S, Liu B, Yang M, et al. Carnosic acid protects against doxorubicin-induced cardiotoxicity through enhancing the Nrf2/HO-1 pathway. Food Funct. 2023;14(8):3849–62. https://doi.org/10.1039/d2fo03904d

Article  CAS  PubMed  Google Scholar 

Wong SK, Chin KY, Ima-Nirwana S. A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury. Drug Des Devel Ther. 2021;15:4615–32. https://doi.org/10.2147/dddt.S331027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Hu LQ, Li HQ, et al. Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway. Korean J Physiol Pharmacol. 2019;23(2):103–11. https://doi.org/10.4196/kjpp.2019.23.2.103

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Shu J, Huang R, Tian Y et al. Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways. Ann Palliat Med. 2020;9(4):1965–75. https://doi.org/10.21037/apm-20-960

Hsieh YL, Shibu MA, Lii CK, et al. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice. J Ethnopharmacol. 2016;192:170–7. https://doi.org/10.1016/j.jep.2016.07.018

Article  CAS  PubMed  Google Scholar 

Safaeian L, Shafiee F, Haghighatnazar S. Andrographolide protects against doxorubicin-and arsenic trioxide-induced toxicity in cardiomyocytes. Mol Biol Rep. 2023;50(1):389–97. https://doi.org/10.1007/s11033-022-08042-4

Article  CAS  PubMed  Google Scholar 

Zhao Y, Wang M, Li Y, Dong W. Andrographolide attenuates viral myocarditis through interactions with the IL-10/STAT3 and P13K/AKT/NF-κβ signaling pathways. Exp Ther Med. 2018;16(3):2138–43. https://doi.org/10.3892/etm.2018.6381

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang E, Liu X, Du Z, Yang R, Zhao Y. Andrographolide ameliorates diabetic cardiomyopathy in mice by blockage of oxidative damage and NF-κB-mediated inflammation. Oxid Med Cell Longev. 2018;2018:9086747. https://doi.org/10.1155/2018/9086747

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischbach H, Döring M, Nikles D, et al. Ultrasensitive quantification of TAP-dependent antigen compartmentalization in scarce primary immune cell subsets. Nat Commun. 2015;6:6199. https://doi.org/10.1038/ncomms7199

Article  ADS  CAS  PubMed  Google Scholar 

Garrido G, Schrand B, Rabasa A, et al. Tumor-targeted silencing of the peptide transporter TAP induces potent antitumor immunity. Nat Commun. 2019;10(1):3773. https://doi.org/10.1038/s41467-019-11728-2

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Xia N, Lu Y, Gu M, et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation. 2020;142(20):1956–73. https://doi.org/10.1161/circulationaha.120.046789

Article  CAS  PubMed  Google Scholar 

Xu M, Li L, Liu Z, et al. ABCB2 (TAP1) as the downstream target of SHH signaling enhances pancreatic ductal adenocarcinoma drug resistance. Cancer Lett. 2013;333(2):152–8. https://doi.org/10.1016/j.canlet.2013.01.002

Article  CAS  PubMed  Google Scholar 

Baran-Marszak F, Feuillard J, Najjar I, et al. Differential roles of STAT1alpha and STAT1beta in fludarabine-induced cell cycle arrest and apoptosis in human B cells. Blood. 2004;104(8):2475–83. https://doi.org/10.1182/blood-2003-10-3508

Article 

Comments (0)

No login
gif