Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol. 2019;16(4):225–42. https://doi.org/10.1038/s41569-018-0114-9.
Sakalihasan N, Michel J-B, Katsargyris A, et al. Abdominal aortic aneurysms. Nat Rev Dis Primers. 2018;4(1):34. https://doi.org/10.1038/s41572-018-0030-7.
Wang YD, Liu ZJ, Ren J, Xiang MX. Pharmacological therapy of abdominal aortic aneurysm: an update. Curr Vasc Pharmacol. 2018;16(2):114–24. https://doi.org/10.2174/1570161115666170413145705.
Article PubMed CAS Google Scholar
Qian GQ, Adeyanju O, Olajuyin A, Guo X. Abdominal aortic aneurysm formation with a focus on vascular smooth muscle cells. Life-Basel. 2022;12(2):ARTN 191. https://doi.org/10.3390/life12020191.
Sorokin V, Vickneson K, Kofidis T, et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front Immunol. 2020;11:ARTN 599415. https://doi.org/10.3389/fimmu.2020.599415.
Article PubMed PubMed Central CAS Google Scholar
Petsophonsakul P, Furmanik M, Forsythe R, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation involvement of vitamin K-dependent processes. Arterioscler Thromb Vasc Biol. 2019;39(7):1351–68. https://doi.org/10.1161/Atvbaha.119.312787.
Article PubMed CAS Google Scholar
Rombouts KB, Merrienboer TAR, Ket JCF, Bogunovic N, Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 2021;52(4):e13697. https://doi.org/10.1111/eci.13697.
Article PubMed PubMed Central CAS Google Scholar
Shi JY, Guo J, Li ZD, Xu BH, Miyata M. Importance of NLRP3 inflammasome in abdominal aortic aneurysms. J Atheroscler Thromb. 2021;28(5):454–66. https://doi.org/10.5551/jat.RV17048.
Article PubMed PubMed Central CAS Google Scholar
Zheng YD, Xu L, Dong NG, Li F. NLRP3 inflammasome: the rising star in cardiovascular diseases. Front Cardiovasc Med. 2022;9:927061. https://doi.org/10.3389/fcvm.2022.927061.
Article PubMed PubMed Central CAS Google Scholar
Wortmann M, Peters AS, Erhart P, Korfer D, Bockler D, Dihlmann S. Inflammasomes in the pathophysiology of aortic disease. Cells. 2021;10(9):ARTN 2433. https://doi.org/10.3390/cells10092433.
Ren XS, Tong Y, Ling L, et al. NLRP3 gene deletion attenuates angiotensin II-induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling. Cell Physiol Biochem. 2017;44(6):2269–80. https://doi.org/10.1159/000486061.
Article PubMed CAS Google Scholar
Ren PP, Wu D, Appel R, et al. Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice. J Am Heart Assoc. 2020;9(7):e014044. https://doi.org/10.1161/JAHA.119.014044.
Article PubMed PubMed Central Google Scholar
Wang AY, Yue SS, Peng AK, Qi R. A review of research progress on agathis dammara and its application prospects for cardiovascular diseases and fatty liver disease. Mini-Rev Med Chem. 2021;21(6):670–6. https://doi.org/10.2174/1389557520666201117110834.
Article PubMed CAS Google Scholar
Khan AW, ul Abidin Z, Sahibzada MUK, et al. Potential biomedical applications of Araucaria araucana as an antispasmodic, bronchodilator, vasodilator, and antiemetic: involvement of calcium channels. J Ethnopharmacol. 2022;298:115651. https://doi.org/10.1016/j.jep.2022.115651.
Article PubMed CAS Google Scholar
Frezza C, Venditti A, De Vita D, et al. Phytochemistry, chemotaxonomy, and biological activities of the araucariaceae family-a review. Plants-Basel. 2020;9(7):ARTN 888. https://doi.org/10.3390/plants9070888.
Enzell CR, Thomas BR. The wood resin of agathis australis salis. - Structure and stereochemistry of the main constituents. Tetrahedron Lett. 1964;5(8):391–7. https://doi.org/10.1016/0040-4039(64)83003-3.
Wang YX, Chen C, Wang QY, Cao YN, Xu L, Qi R. Inhibitory effects of cycloastragenol on abdominal aortic aneurysm and its related mechanisms. Br J Pharmacol. 2019;176(2):282–96. https://doi.org/10.1111/bph.14515.
Article PubMed CAS Google Scholar
Chen C, Wang Y, Cao Y, et al. Mechanisms underlying the inhibitory effects of probucol on elastase-induced abdominal aortic aneurysm in mice. Br J Pharmacol. 2019;177(1):204–16. https://doi.org/10.1111/bph.14857.
Article PubMed PubMed Central Google Scholar
Chhabra A, Rani V. Gel-based gelatin zymography to examine matrix metalloproteinase activity in cell culture. Methods Mol Biol. 2018;1731:83–96. https://doi.org/10.1007/978-1-4939-7595-2_9.
Article PubMed CAS Google Scholar
Lal AR, Cambie RC, Rutledge PS, Woodgate PD. Chemistry of Fijian plants. 6. Ent-pimarane and ent-abietane diterpenes from Euphorbia-Fidjiana. Phytochemistry. 1990;29(7):2239–46. https://doi.org/10.1016/0031-9422(90)83045-3.
Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther. 2015;13(9):975–87. https://doi.org/10.1586/14779072.2015.1074861.
Article PubMed PubMed Central CAS Google Scholar
Bossone E, Eagle KA. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes. Nat Rev Cardiol. 2020;18(5):331–48. https://doi.org/10.1038/s41569-020-00472-6.
Yuan Z, Lu Y, Wei J, Wu J, Yang J, Cai Z. Abdominal aortic aneurysm: roles of inflammatory cells. Front Immunol. 2021;11: 609161. https://doi.org/10.3389/fimmu.2020.609161.
Article PubMed PubMed Central Google Scholar
Maguire EM, Pearce SWA, Xiao R, Oo AY, Xiao QZ. Matrix metalloproteinase in abdominal aortic aneurysm and aortic dissection. Pharmaceuticals. 2019;12(3):ARTN 118. https://doi.org/10.3390/ph12030118.
Yu J, Liu R, Huang JH, Wang LX, Wang W. Inhibition of Phosphatidylinositol 3-kinease suppresses formation and progression of experimental abdominal aortic aneurysms. Sci Rep. 2017;7(1):15208. https://doi.org/10.1038/s41598-017-15207-w.
Article PubMed PubMed Central Google Scholar
Li D, Guo Y-y, Cen X-f, et al. Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-κB pathways. Acta Pharmacol Sin. 2021;43(8):1989–2002. https://doi.org/10.1038/s41401-021-00820-3.
Article PubMed PubMed Central CAS Google Scholar
Zhu Q, Enkhjargal B, Huang L, et al. Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation. 2018;15(1):178. https://doi.org/10.1186/s12974-018-1211-8.
Article PubMed PubMed Central Google Scholar
Fu H, Shen Q-r, Zhao Y, et al. Activating α7nAChR ameliorates abdominal aortic aneurysm through inhibiting pyroptosis mediated by NLRP3 inflammasome. Acta Pharmacol Sin. 2022;43(10):2585–95. https://doi.org/10.1038/s41401-022-00876-9.
Article PubMed PubMed Central CAS Google Scholar
Wu D, Ren PP, Zheng YQ, et al. NLRP3 (Nucleotide oligomerization domain-like receptor family, pyrin domain containing 3)-caspase-1 inflammasome degrades contractile proteins: implications for aortic biomechanical dysfunction and aneurysm and dissection formation. Arterioscler Thromb Vasc Biol. 2017;37(4):694–706. https://doi.org/10.1161/Atvbaha.116.307648.
Article PubMed PubMed Central Google Scholar
Coll RC, Robertson AAB, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248-+. https://doi.org/10.1038/nm.3806.
Comments (0)